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serious research, has been a dream of mine for almost thirty years. 

It was, therefore, a matter of c 

the finest doctoral studen 

- J. K. Nathma d L. L. Lehman - bo 
topics closely related to that subject. 

studies were completed within a few weeks near the end of Summer 

By coincidence their 

1981, At AIAA's invitation, they and I had also collaborated a 

year earlier on a survey and general-interest paper for the 1980 

International Meeting and Technical Display in Baltimore. The 

resulting opportunity of combining these 

into a single large .SUDAARseemsto provide an efficient and 

three neighborly documents 

economical means of distribution. It is worth mentioning that our 

survey paper has been submitted for publication in a special issue 

of a Polish journal, honoring the 70th birthday of Professor Wladyslaw 

Fiszdon, but has not yet appeared there. 

The two dissertations speak so well for themselves that no 

summary need be provided. Mr. Lehman's had its origins in his fascina- 

es of filamentary composite materials as a 

eroelastic behavior. A hough a focus of the final 

emely effective scheme of solving one-dimensional 

boundary value problems, yet many of the examples involve such 

compo . Mr. Nathan's grew, among other roots, from an interest 
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in the propulsion of birds, fish and variable-geometry aircraft. 

One of its highlights is accurate measurement of the aerodynamic 

force components which have special significance for this kind of 

flight. 

Except for minor proof corrections, the two dissertations are 

reproduced without change as parts B and C of this report. 

therefore differ in format, notation, organization and style. Quite 

properly they are the individualistic products of their signed authors. 

The curious scheme of page numbering is another consequence of the 

combination, and no apology need be made. 

One,messageappearsrepeatedly in this report: 

They 

our expression of 

appreciation for the continued, englightened research support that we 

receive from AFOSR and NASA. Without their involvement, neither 

these contributions to knowledge nor the education achieved during 

their creation would have been possible. 

Holt Ashley 
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THE CONSTRUCTIVE USES OF AEROELASTICITY 

by * - I +* 
Holt Ashley, Larry.L. Lehman,' and James K. Nathman 

Stanford University 
Stanford, CA 94305, USA 

ABSTRACT 

Historical, previously-published and new material is illustrated and 
discussed in support of the proposition that static or dynamic structural 
deformations of aerospace vehicles can often be used for constructive pur- 
poses. 
intended function. 
Wrighcs' wing warping. 
high-speed aircraft, fixed-pitch propellers and rotors. Accelerations and 
loads in rough air are diminished. 

Examples are presented chronologically in categories related to the 
Efficient control of flight is attainable, as by the 

Con,straints can be relaxed on the performance of 

Aeroelastic deformations furnish a means 
for primary propulsion. 
"complete aeroelas tic CCV. I' 

Prospects for the future are examined, notably the 

Based on Paper No. 80-0877, presented at AIAA International Annual Meeting 
and Technical Display, Baltimore, MI), USA, May 6-11, 1980. 
January 1981. 

Submitted in 
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In t roduct ion  

Because a l l  s t r u c t u r a l  materials exh ib i t  f i n i t e  e l a s t i c i t y ,  no a r t i f a c t  

of engineering behaves under load i n  a completely r i g i d  fashion. A s  a r u l e ,  

elastic o r  p l a s t i c  deformation is regarded as an undesirable by-product of 

design, and i t  must be  l imi t ed  i n  some appropr ia te  way. Thus cons t ruc t ion  

codes t y p i c a l l y  cons t r a in  the  de f l ec t ions  of such c i v i l  s t r u c t u r e s  as bridges 

o r  building f l o o r s ,  and elongated compression members must be protected 

aga ins t  buckling i n s t a b i l i t y .  It is  equally obvious, however, t h a t  ( r eve r s ib l e )  

f l e x i b i l i t y  can o f t e n  be  put t o  good use. 

homely ob jec t s  as paperc l ips  o r  t h e  b i s t a b l e  keys of an e l e c t r o n i c  ca l cu la to r .  

But they a l s o  include sp r ings  of a l l  s i z e s ,  shock absorbers,  a r r e s t i n g  o r  

landing gear,  and a hos t  of o the r  devices t h a t  w i l l  occur t o  t h e  thoughtful 

reader. 

Instances may be found i n  such t i ny ,  

S t a t i c  and dynamic s t r u c t u r a l  deformation plays a pecu l i a r ly  s i g n i f i c a n t  

r o l e  i n  aeronautics,  where t h e  imperative of l i g h t  weight invar iab ly  comes 

i n t o  c o n f l i c t  with requirements involving s t i f f n e s s  and s t a b i l i t y .  When such 

design conditions relate t o  members which s u s t a i n  t h e  heavy aerodynamic pres- 

su res  of f l i g h t ,  t h e  assoc ia ted  phenomena are c a l l e d  "aeroelastic." F i r s t  

i d e n t i f i e d  during World War I, t h e i r  treatment gave b i r t h  t o  a spec ia l ized  

d i s c i p l i n e  t h a t  remains active today, although i t  is  gradually being absorbed 

i n t o  the  mainstream of atmospheric veh ic l e  design. 

* 

Despite f a sc ina t ing  challenges t h e  career of t h e  a e r o e l a s t i c i a n  has many 

f r u s t r a t i o n s ,  f o r  he is usua l ly  cast as a "policeman." The analyses and tests 

which he performs, i n  t h e  course of avoiding dangerous i n s t a b i l i t i e s  l i k e  wing 

f l u t t e r  o r  excessive s t r u c t u r a l  loads,  are seen as penalizing f l i g h t  speeds o r  

c r ea t ing  unwanted and perhaps unnecessary weight increases .  

f i a b l e ,  bu t  sometimes inappropr ia te  view. 

This i s  a j u s t i -  

* 
Representative e a r l y  books which summarized the  state of t h e  a e r o e l a s t i c  

art  w e r e  those by Fiszdon,l  Fung,2 and Bisplinghoff, Ashley and Halfman.3 
Among numerous o ther  c i t a t i o n s  t h a t  might b e  made consider t h e  recent  t e x t  
by Dowell e t  al .4 and Col la r ' s  h i s t o r i c a l  survey. 5 
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By no means universa l ly  recognized is t h a t  a e r o e l a s t i c  behavior can be 

cons t ruc t ive ly  employed toward improving the  performance, c o n t r o l l a b i l i t y ,  

e f f i c i ency  and comfort of a i rp l anes  and r e l a t e d  aerodynamic machines. With 

the aim of demonstrating t h i s  proposi t ion - and perhaps of enhancing the  

"image" of a e r o e l a s t i c i t y  i n  an en te r t a in ing  way - t he  authors  have assembled 

numerous i l l u s t r a t i v e  examples. Some are from t h e  earlier h i s t o r y  of aero- 

naut ics ,  o thers  cur ren t  o r  purely conceptual. With c e r t a i n  a r b i t r a r i n e s s ,  a 

se l ec t ion  of these  examples has been categorized i n  accordance with the  t i t les 

of s ec t ions  which follow. 

ca re fu l ly  chosen p i c tu re s ,  graphs and references.  They encompass q u i t e  d i f -  

f e r e n t  devices,  a wide range of operat ing speeds, and varying degrees of 

sophis t ica t ion .  

t iveness .  " 

Each is summarized as succ inc t ly  as possible ,  with 

One hopes t h a t  un i ty  is achieved on t h e  theme of "construc- 

Improved Control and S t a t i c  S t a b i l i t y  

I n  h i s  appreciat ion of the  engineering achievements of Wilbur and Orville 

Wright, Coombs' i d e n t i f i e s  about ha l f  a dozen which he judges espec ia l ly  o r ig i -  

n a l  and important. One of these w a s  r e a l l y  e f f e c t i v e  con t ro l  about the  air- 

p lane ' s  r o l l  axis - something they accomplished 

of "wing warping. 

The ou t l ines  of t h i s  scheme are depicted in 

views of the  1903 Wright "Flyer" wing taken from 

with t h e  a e r o e l a s t i c  technique 

Fig. 1 by means of two phantom 

Culick's exce l len t  art icle.  7 

I n  the upper sketch one sees t h a t  the  diagonal bracing w i r e s  which s t i f f e n  

t h e  f o r e  and a f t  t r u s s  s t r u c t u r e s  between the  wings are omitted from the two 

ou te r  a f t  bays neares t  each wingtip. 

made more f l e x i b l e ,  so t h a t  they can be twisted antisymmetrically up and down 

by the  con t ro l  w i r e s  shown i n  the  lower sketch. Lying prone i n  the  "cradle," 

t he  p i l o t  could move h i s  h i p s  sideways toward the  wing which he wished t o  

depress. From a l l  r epor t s ,  vers ions  of t h i s  system employed on a l l  the  later 

Wright g l i d e r s  and a i rp l anes  made it a simple matter e i t h e r  t o  keep. t he  wings 

level o r  t o  bank f o r  turning,  as necessary, i n  proper coordination with rudder 

control .  Only with the  1909 adoption of t he  a i l e r o n  by Farman w a s  wing tor- 

s ion  supplanted as the  b e s t  way t o  do the  job. 

Thus the  outboard t r a i l i n g  edges are 

8 
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Wing warping made its appearance again i n  a very modern context as p a r t  

of the  l a t e ra l -d i r ec t iona l  con t ro l  system f o r  the  successful  man-powered air- 

c r a f t ,  "Gossamer Condor" and'%ossamer Albatross." The functioning of t h i s  

system is explained by Lissaman, 

i n  Burke's exce l len t  summaryl0 of t h e  Condor designs. 

photograph of t he  Albatross i n  f l i g h t .  Barely v i s i b l e  are some of t he  bracing 

w i r e s  which run diagonally from the  base of t h e  v e r t i c a l  king pos t  out  t o  

var ious s t a t i o n s  along the  wingspan. These w i r e s  are p a r t  of primary s t ruc-  

tu re ,  but  one p a i r  of them w a s  c lever ly  arranged t o  t w i s t  the  t i p s  antisym- 

met r ica l ly  i n  response t o  t h e  p i l o t ' s  s t i c k  actuat ion.  

and. i ts mechanical r e a l i z a t i o n  is de ta i l ed  

Figure 2 is a closeup 

A remarkable f ea tu re  of t he  Condor system is  tha t ,  by in t en t ,  a given 

wing t w i s t  l eads  t o  opposite turning from what occurred on the Wright Flyer. 

This is because the  very l i g h t ,  wide Condor l i f t i n g  sur face  ca r r i ed  with i t  

i n  r o l l  a huge v i r t u a l  mass of a i r ,  which makes it very unresponsive t o  bank 

commands. On the  o ther  hand, t he  increased induced drag of the  wing whose 

t r a i l i n g  edge is  warped downward - say, t he  r i g h t  - causes t h a t  wing t o  

swing backward and t o  bui ld  up both a yawing ve loc i ty  and a s i d e s l i p  toward 

t h e  l e f t .  

t h i s  motion. Three r e l a t ed  e f f e c t s  then cause the  r i g h t  wing t o  drop : loss 

of l i f t  due t o  its reduced airspeed,  the  tip-down r o l l i n g  due t o  t h e  pos i t ive  

yawing ve loc i ty ,  and later the  r o l l i n g  moment due t o  s i d e s l i p .  When the  de- 

s i r e d  angle  of bank is  developed, t he  p i l o t  reduces the  warping and uses 

Some rightward t i l t i n g  of the  canard sur face  assists i n  producing 
9 

opposite lateral displacement of t he  canard t o  t r i m  t o  zero s i d e s l i p  and 

achieve a coordinated turn.  Reversal of these s t e p s  w i l l  then br ing the  

bank angle back t o  zero. 

procedure, i t  proved f a i r l y  easy t o  l ea rn  and execute i n  f l i g h t .  

Although g rea t  i n s igh t  w a s  needed t o  discover t h i s  

Airplanes with sweptback wings of l a rge  aspect  r a t i o  can bene f i t  from an 

ae roe la s t i c  phenomenon which - a t  least i n i t i a l l y  - w a s  not an t ic ipa ted  by 

t h e i r  designers. 

addi t iona l  l i f t  caused by bending and twist ing of t h e  s t ruc tu re .  

of negl ig ib le  importance when the  sweep angle  A is s m a l l ,  wingtip-upward 

bending due t o  a pos i t i ve  l i f t  increment when A > 15 o r  20 degrees can re- 
duce e f f ec t ive  angles of a t t a c k  near the t i p s ,  thus moving the  l i f t  center  

Basical ly  i t  involves spanwise s h i f t i n g  of the  center  of 

Although 
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inboard and forward by a d is tance  which depends s t rongly  on f l i g h t  dynamic 

pressure q. 

cen ter  (A.C.) relative t o  where it would be i f  the  wing w e r e  r i g i d .  Taken 

from a c l a s s i c  paper by Brown, Holtby and Martin," Fig. 3 i l l u s t r a t e s  t h i s  

One consequence is a forward s h i f t  of t he  vehic le ' s  aerodynamic 

e f f e c t  i n  terms of the  s t a b i l i t y  de r iva t ive  dCM/dCL as it might vary with q 

on an a i rp l ane  l i k e  the  B-47. 

Figure 3 a c t u a l l y  shows what one would measure on an e las t ica l ly-sca led  

model, momted i n  a wind tunnel and subjected t o  changes i n  fuselage incidence 

only. 

1950's t he re  are o ther  consequences when incidence is changed i n  f l i g h t ,  as 
during a pull-up, en t ry  i n t o  a turn,  e t c .  The increased l i f t  a l s o  causes a 

pos i t i ve  normal acce lera t ion ,  whose i n e r t i a  fo rces  bend t h e  wingtips back 

downward and tend to  compensate f o r  t he  a e r o e l a s t i c  A-C. s h i f t .  

t h a t  t h i s  c"ancel1ation w a s  almost pe r f ec t  on the  B-47 and thus produced an 

a i rp l ane  whose longi tudina l  dynamics and cont ro l  were not  subs t an t i a l ly  d i f -  

f e r e n t  fTom what might have occurred with a r i g i d  wing. 

Fortunately f o r  t he  B-47 and similar configurat ions of the  1940's and 

It is  s a i d  

Inc identa l ly ,  there  are numerous by-products of a e r o e l a s t i c i t y  i n  the  

presence of sweep. ' On the  one hand, the  loss of outboard a i l e r o n  cont ro l  a t  
1 2  high q (cf .  - the  discussion i n  Perkins ) is undesirable and d e f i n i t e l y  re- 

qui res  correct ion.  On the  o ther ,  divergence i n s t a b i l i t y  is avoided completely 

when A is  l a r g e  enough. 

scheme of H i l l ,  

s i o n a l  r i g i d i t y  produces exac t ly  i n f i n i t e  divergence speed with a consequent 

disappearance of the  a e r o e l a s t i c  inf luence on A.C. locat ion.  

One i n t e r e s t i n g  example is the  "aero-isoclinic" 
13 whereby a proper mixture of sweep angle,  bending and tor- 

Variable sweep angle  confers  s i g n i f i c a n t  performance advantages on air- 

planes l i k e  the  F-111, F-14, B-1 and e a r l y  Boeing SST designs. But care  must 

be taken t o  understand the  r o l e  of wing f l e x i b i l i t y ,  e spec ia l ly  i n  cases of 

l a rge  span and s t r u c t u r a l  aspect  r a t i o .  

subsonic and supersonic speeds, and t o  a degree they are subjec t  t o  the  

f ami l i a r  rearward A.C. s h i f t  and g rea t e r  s ta t ic  margin t h a t  go with t r a n s i t i o n  

from the  former t o  the  lat ter.  The accompanying increase  i n  A would seem t o  

exacerbate t h i s  s h i f t .  It turns  out, however, t h a t  designers have been ab le  

These vehic les  must operate  a t  both 
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to adapt the aeroelastic effect of Fig. 3 so as to keep the "open-loop" A.C. 

migration within acceptable bounds; C.G. control by fuel transfer may also 
be required.12 
sweep aircraft. 
Corporation kindly furnished a report by Jones, 
attempted some rough analyses which suggest very favorable behavior. 
stance, study of pitching moment curves near the maximum-q flight limits 
show roughly complete cancellation of A.C. shifts. 
at 16 sweep to 1.5 at 72.5' causes a rigid-wing aft A.C.  displacement of about 
0.5 of the mean aerodynamic chord, but the forward displacement due to wing 
deformation is 0.4.  

very small, there is thus an 80% compensation between the two effects. 
recognized that the F-111 would not fly at Mach 0.9 with wings full forward, 
but this calculation is done for fixed altitude, and similar compensation 
occurs also at intermediate A ' s .  

Published data are hard to find on these features of variable- 
Relative to the F-111, however, R. Peloubet of General Dynamics 

14 and the present authors have 
For in- 
14 

Going from Mach number 0.9 
0 

Since the inertia-elastic influence on A.C.  in flight is 
It is 

A more recent case where aeroelasticity improves pitching-moment character- 
istics is furnished by the AD-I. 

prove in flight the oblique-wing concept proposed by Jones." 
and YeeI6 carried out wind-tunnel measurements on an elastically-scaled alumi- 
num model (Fig. 4 )  resembling the AD-1. Figure 5 presents typical plots of 
the pitching-moment curves for this model at A = 45'. 

Ref. 16 fully substantiate their conclusion that "an oblique wing designed 
with the proper amount of flexibility can 'self relieve' itself of asymmetric 
spanwise stalling and the associated nonlinear moment curves." 
in a subsequent section here, it is believed that the use of filamentary com- 
posite structural skins might be even more effective in producing such results. 

This experimental vehicle is intended to 
In 1977, Hopkins 

* 
It and other data in 

As discussed 

Better Performance of Propellers and Rotors 

I n  the past five years there has been renewed attention to the aero- 
elasticity of propellers, stimulated by the development of large wind turbines 
and of high-speed, high-efficiency turboprop aircraft designs. Notably the 

* 
The two higher dynamic pressures on Fig. 5 simulate cruising and high- 

speed operation. 
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work by Hamilton Standard Division on advanced propellers with composite 
blades (cf. I Black et al.17) has rekindled interest in tailoring stiffness 
properties so as to increase efficiency. 
however, one discovers that using flexibility to advantage in propellers was 
an old idea. 

From a brief look into the past, 

The "Flex-O-Prop" 

The first such practical application of aeroelasticity was by Max Munk 
18 in his patented wooden "Flex-O-Prop". 

wood to produce elastic coupling between bending and twisting in such a manner 
that a highly loaded blade would assume a shallower pitch setting as it bent 
forward, thereby providing for more efficient operation at the high-thrust, 
low-speed takeoff condition. Since thrust is diminished somewhat in cruising 
flight, the'blades would naturally return to the larger pitch settings desir- 
able for efficient high speed operation at reduced engine rpm. 

Munk's propeller employed laminated 

The idea (Fig. 6) for utilizing coupling between bending and twist was 
arrived at after making the observation that the blade tip path of test pro- 
pellers moved forward and-backward under differeat throttle settings. The 
final design, which resulted from several years of trial-and-error testing 
in collaboration with engineer Eli Amanuel, employed diagonally-oriented 
outer laminations at approximately 45 to the spanwise axis combined with 
inner laminations which were radially disposed. 
which counteracted normal undesirable twisting tendencies and produced, on 
a somewhat limited scale, the effects of a variable-pitch propeller. 

0 

The result was a propeller 

Flight tests comparing the Flex-O-Prop with an identical standard wooden 
propeller were performed using a Model 'E' Ercoupe with an 85 hp Continental 
engine (Hoadley ). Results included a 16% decrease in takeoff distance, a 
rate-of-climb increase of 13%, a maximum static thrust boost of 5 % ,  and a 
speed increase of 14% at fixed cruise power setting for the Flex-O-Prop. 
additional benefit noticed during flight testing was a slight decrease in 
vibration level, which was attributed to the 'dampening' action of the diago- 
nal laminations. 

19 

An 
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Advanced Composite Propellers 

A recent theoretical study (Rogers") examines the aeroelastic benefits 
to be derived from applying advanced filamentary composite material technology 
to propeller design. 
propeller, an increase in efficiency of 5% at the design point and as much as 

20% at off-design points can be achieved over that of a rigid design (Fig. 7). 
At the same time, there was shown to be a significant extension to the range 
of advance ratios over which efficient operation is possible. Controllable- 
pitch propellers with composite blades were also shown to have approximately 
a 5% increase in maximum efficiency over rigid controllable blades. 

It was demonstrated that, for a fixed-pitch "tailored" 

The "P las t oma t ic" Propeller 

Recent research on controllable, composite light-airplane propellers 
suitable to thegeneral aviation market has been carried out by Larrabee at 
MIT.21'22 
propeller, which would use fiber reinforced plastics in a modern version of 
the Koppers 'Aeromatic' propeller of the 1950's. In this design, the feather- 
ing axis bearings are freed of centrifugal loads by introducing a tensionally 
strong but torsionally flexible tension tie member and thus allowing the blades 
to balance their loads against each other while equalizing the blade pitch 
angles. 
feathering axis, the equilibrium of aerodynamic, inertial, and torsional 
moments causes a blade angle change with airspeed such that the propeller 
absorbs its rated horsepower. 

His efforts produced a conceptual design for a "Plastomatic" 

By having the locus of aerodynamic centers offset from the blade 

In fact, the propeller can be designed to have two equilibrium blade 
angle settings; one equilibrium corresponds to a low-airspeed, high-thrust 
condition, and a second to a cruise-speed, cruise-thrust condition. It also 
exhibits approximate constant-speed characteristics about a specified design 
rpm but is equipped with a cruise setting override to allow efficient oper- 
ation at a lower rpm as well. 

Performance calculations comparing a Plastomatic design suitable for 
installation on a Grumman-American AA-1 airplane with a standard McCauley 7157 
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f ixed-pi tch metal p rope l l e r  (71-1 diameter, 57-inch p i t  

run reduct ion of 28% and an i n c r  d rate of c l  

Another advantage of t h e  Plastomatic  s t e m s  from it  

compared with 20 l b s  r t h e  s o l i d  aluminum fixed-pitch p r  

Hel icopter  Rotors 

As a he l i cop te r  increases  its forward speed the  aerodynamic condi t ions 

experienced by each r o t o r  blade begin t o  vary more severe ly  with azimuthal 

pos i t ion .  The r e s u l t ,  f o r  a conventional blade,  is a buildup of c y c l i c  loads  

and v i b r a t i n g  hub forces .  

throughout the  f l i g h t  envelope with t h e  usual  design parameters of t w i s t ,  
a i r f o i l  shape, planform and l / r e v  c y c l i c  p i t c h  changes. Manufacturers have 

looked t o  v ib ra t ion  absorbers mounted on the  pylon o r  hub t o  achieve acceptable  

r i d e  qua l i fy  i n  the  presence of t hese  forces .  

cont ro l lab le- twis t  ro tors23  are another promising means of amelioration. 

These fo rces  cannot be  e f f e c t i v e l y  cont ro l led  

Mult icycl ic  p i t c h  changes and 

By c a r e f u l  choice of t h e  aerodynamic and elastic p rope r t i e s  of the  blade,  . 
i t  is  poss ib le  t o  reduce the loads passively.  Such a design is r e fe r r ed  t o  

as the  "ae roe la s t i ca l ly  conformable" (or  adaptive) ro to r .  Blackwell and 

KerkleyZ4 found that the  most important design parameters were :  (1) t i p  

sweep, (2) camber, (3)  aerodynamic center ,  elastic axis and a i r f o i l  c.g. 

pos i t i ons ,  (4) t o r s i o n a l  s t i f f n e s s  and (5) tw i s t .  

A he l i cop te r  b lade ' s  l a r g e  negat ive tw i s t ,  which d i s t r i b u t e s  t h e  l i f t  

e f f i c i e n t l y  i n  hover, is de t r imenta l  i n  high-speed forward f l i g h t  where it 

produces a p o s i t i v e l y  loaded roo t  and negat ively loaded- t i p  on the  advancing 

blade.  It would be advantageous i f  i n  t h i s  condi t ion t h e  blade could be un- 

twisted.  

from Ref. 241, a predominantly once-per-revolution (1P) twis t ing  moment is 

exerted on t h e  blade by t h e  a i r loads .  

on the  t i p  of t he  advancing blade produces a nose-up moment, which w i l l  tend 

t o  untwist  t he  blad and reduce the  negat ive load a t  t h e  t i p .  

By sweeping the  blade a t  t h e  t i p  (see Fig. 8, designs nos. 2 and 3, 

An a f t  sweep coupled with t h e  download 

This a c t i o n  

y analogous t o  t h e  gus t  a l l e v i a t i o n  c h a r a c t e r i s t i c s  of a swept-back , 

must, of course, be  s u i t a b l y  f l e x i b l e .  i n  to rs ion ,  which makes wing. The r 
f i lamentary composite b lades  near ly  idea l .  
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The e f f e c t  of a i r f o i l  camber is  somewhat s i m i l a r  t o  t h a t  of t i p  sweep. 

By choosing a sec t ion  with non-zero p i tch ing  moment C 
f o r e  t w i s t )  dependent on t h e  dynamic pressure  can be  applied t o  t h e  blade. 

a moment (and there- mo ' 

Negative camber (pos i t i ve  C ) is favorable ,  again because i t  tends t o  un- mo 
t w i s t  t h e  advancing blade. Wind-tunnel t e s t i n g  (c f .  Fig. 9 from Ref. 25) has - 
shown t h a t l P  and 2P f l a p  bending is  thereby reduced by about 40% and speed 

s t a b i l i t y  is improved with l i t t l e  decrease i n  r o t o r  e f f ic iency .  The e f f i -  

ciency i n  hover can a c t u a l l y  be improved by increas ing  t h e  s ta t ic  t w i s t  of 

t h e  blade.25 

e l a s t i c  a x i s  is  similar t o  t h a t  of negative camber. 

,. 
The e f f e c t  of having t h e  aerodynamic cen te r  forward of t h e  

The Vertical-Axis Wind Turbine 

Two schemes have been analyzed and t e s t e d  f o r  r e a l i z i n g  the  s impl i c i ty  

and high e f f i f i e n c y  promised by t h e  Darrieus wind tu rb ine  (VAWT). 

(Fig. 10) curves the blades i n t o  a shape which minimizes s t r u c t u r a l  loads due 

t o  ro t a t ion .  The second, whose s t r a i g h t ,  v e r t i c a l  blades are p a r a l l e l  t o  t h e  

a x i s  of ro t a t ion ,  may r equ i r e  a heavier s t r u c t u r e  but  o f f e r s  c e r t a i n  o ther  

advantages. For example, t h e  power-producing angle-of-attack o s c i l l a t i o n s  

which take  p lace  as  t h e  a i r f o i l  revolves i n  a wind-stream (see Fig. 11) can 

be conveniently amplified. 

around a circle and studying t h e  v a r i a t i o n  of the  forward, chordwise compo- 

nent of t h e  l i f t  f o r c e  L, one sees t h a t  higher average torque can be achieved 

by varying Act i n  proportion t o  cos0 = cosot ,  where 51 is t h e  angular v e l o c i t y  

of ro t a t ion .  

The f i r s t  

By imagining t h e  blade i n  t h e  f i g u r e  t o  move 

I n  t h e  "Gitomill" design, 26 power is  thus augmented by a t t ach ing  the  

blade ends to cam supports with ad jus t ab le  amplitude. 

proach- one which does not r equ i r e  active c a m  con t ro l  based on sensing the  

wind d i r e c t i o n  - would seem t o  involve the  use  of t o r s ion  spr ings  a t  the  

po in t s  of attachment. I f  t h e  e f f e c t i v e  spr ing  elastic axis ( E . A . ,  as i n  

Fig. 11) w e r e  placed behind t h e  aerodynamic center  of wind-induced l i f t ,  one 

sees how t h a t  f o r c e  i t s e l f  can produce t h e  torque needed f o r  blade-angle 

cycling. The system parameters would, of course, have t o  be adjusted t o  

avoid resonance and t o  keep Act i n  phase with L. 

An even simpler ap- 
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By means of quasi-two-dimensional aerodynamic theory l i k e  t h a t  proposed 

i n  Ref. 27, one can p red ic t  t he  inf luence of cycl ing amplitude A: on t he  power 

coe f f i c i en t  

Power Output 
3 

c =  
P 31 PAV 

as i t  depends on advance r a t i o  Q r / V  . 
swept by the  machine; o ther  symbols are defined i n  Fig. 11.) For a design 

wi th  s o l i d i t y  typ ica l  of modern VAWT's, Fig. 1 2  presents  some r e s u l t s .  

Cycling a t  f. 0.1 rad ian  (+ - 5.70') appears q u i t e  p r a c t i c a l  and avoids a i r f o i l  
s t a l l i n g  i n  the  optimum range of Q r / V  * ye t  t h e  t h e o r e t i c a l  increase  of out- W' 
put  approaches 20%. 

(p is a i r  dens i ty  and A f r o n t a l  area 
W 

It is, inc identa l ly ,  not  unreasonable t o  suggest f o r  a s t r a igh t -  o r  

curved-bladed VAWT t h a t  i ts to r s iona l  proper t ies  might be adjusted i n  such 

a way t h a t  power augmentation occurs without any need f o r  spec ia l  blade 

supports.  I f  f ea s ib l e ,  t h i s  scheme would represent  an extremely simple 

cons t ruc t ive  use of a e r o e l a s t i c i t y .  

Increased Safe Speeds, Turning Performance and Energy 

Maneuverability Through Use of Composites o r  Active Control 

Among the  most pernicious of a e r o e l a s t i c  manifestat ions are divergence 

and f l u t t e r  - c r i t i ca l  f l i g h t  condi t ions above which a l i f t i n g  surface o r  

complete air  vehic le  experiences of ten-destruct ive s ta t ic  o r  dynamic insta-  

b i l i t y  due t o  s t r u c t u r a l  deformations in t e rac t ing  with the  airstream. It 

has  long been a dream t h a t  a c t i v e  means might be found t o  ameliorate o r  

e l iminate  these i n s t a b i l i t i e s ,  but  only i n  t h e  pas t  decade has there  been 

p r a c t i c a l  progress toward t h e  goal. 

o r  con t ro l l i ng  e l a s t i c i t y ,  t h e  r e s u l t s  f a l l  within the  purview of t h i s  paper. 

Since it is  achieved through modifying 

Divergence 

A dramatic instance of passive "divergence control" is furnished by the  

s k i l l f u l  use of composites i n  t h e  sk ins  of sweptforward wings. 

wings o f f e r  performance ga ins  f o r  c e r t a i n  aircraft  types, when constructed 

Although these 
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i n  conventional materials t h e i r  bending-torsion coupling usua l ly  l eads  t o  

such low divergence 

In t h e  1980's, however, f i g h t e r s  s i m i l a r  t o  t h e  Rockwell I n t e r n a t i o n a l  

"SabreBat" (Fig. 13)  w i l l  soon be f ly ing .  They owe t h e i r  success t o  research 

l i k e  the  s impl i f ied  analyses published by Weisshaar. 

* 
speed VD t h a t  des igners  have been l o a t h  t o  adopt them. 

28,29 

Figure 14, adapted from Ref. 28, shows c l e a r l y  what t he  p o s s i b i l i t i e s  

are. 

l i n g  between bending and t w i s t  is  cont ro l led  by o r i e n t i n g  t h e  un id i r ec t iona l  

f i b e r s  i n  i t s  uniform, re inforced-p las t ic  sk ins .  The f i b e r  angle, 8, i s  

measured from a reference  normal t o  t h e  elastic axis; therefore ,  favorable  

va lues  around 8 = 100 correspond t o  reinforcement p a r a l l e l  t o  a d i r e c t i o n  

10 ahead of t h i s  axis.  For an  unswept and two sweptforward cases, t h e  f i g u r e  

It relates t o  a c a n t i l e v e r  of constant chord and sweep A ,  whose coup- 

0 

0 

shows 8's influence on V - as r e f e r r e d  t o  t h e  speed VDo t h a t  would be observed 

on a wing of s;imilar conf igura t ion  a t  zero A and 8. One sees how, even up t o  

60 

t h a t  of an acceptable re ference  design. 

s ide ra t ions  obviously r e q u i r e  t h a t  some sk in  p l i e s  be or ien ted  i n  o ther  than 

t h e  optimum d i r ec t ion .  It is  s i g n i f i c a n t ,  however, t h a t  about 70% of these  

. p l i e s  run very c lose  t o  0 = 100 on t h e  wing i l l u s t r a t e d  ( i n  mockup) by Fig. 13. 

D 

0 of forward sweep, t h e  divergence boundary can be made equal o r  super ior  t o  

On an a c t u a l  a i rp l ane ,  o ther  con- 

0 

T a i l o r i n g  

The study i n  Refs. 28 and 29 represents  a r a t h e r  unsophisticated example 

of what has become known as "ae roe la s t i c  t a i lo r ing . "  

i n t e r a c t i o n s  may be employed, t h i s  concept t y p i c a l l y  involves i n t e n t i o n a l  

coupling between bending and t w i s t  of a l i f t i n g  su r face  t o  accomplish one o r  

more des i r ab le  e f f e c t s  - not un l ike  some of those a l ready  discussed i n  t h e  

preceding sect ion.  References 30 and 31 are samples from many recent  docu- 

ments on t a i l o r i n g .  

Although more complex 

One common ob jec t ive  is  t o  con t ro l  t he  spanwise d i s t r i b u t i o n  of aero- 

dynamic incidence over a wide range of maneuvering load f ac to r s .  On an air- 

supe r io r i ty  f i g h t e r ,  t he  r e s u l t  can be a s u b s t a n t i a l  decrease of induced drag 

* 
It is  remarked t h a t  t he  worst i n s t a b i l i t y  may sometimes be a low-frequency 

f l u t t e r .  
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i n  rap id  turns.  The consequent increase  i n  "energy maneuverability" o r  

s p e c i f i c  excess power" could mean t h e  d i f fe rence  between defea t  and v i c to ry  

during air- to-air  combat. Taken from Vol. I of Ref. 31, Fig. 15  demonstrates 

how ( theo re t i ca l )  modifications t o  t h e  YF-16 wing a f f e c t  i t s  drag polar  f o r  

f l i g h t  a t  Mach 0.9 and 10,000-ft a l t i t u d e .  

are p a r t i c u l a r l y  e f f ec t ive ;  i n  a typ ica l  high-g tu rn  near  C 

reduction approximates 26% compared t o  the  o r ig ina l .  

11 

Graphite-epoxy composite sk ins  

L = 0.7 the  CD 

F l u t t e r  

I n  pr inc ip le ,  one can devise  dozens of techniques f o r  ac t ive ly  o r  pas- 

s i v e l y  r a i s i n g  an a i rp l ane ' s  f l u t t e r  speed and thereby avoiding the  associated 

performance l imi ta t ions .  

u n t i l  1973, near ly  always carries with i t  some s o r t  of penalty: increased 

weight t o  enhance s t i f f n e s s  o r  t o  massbalance a movable surface,  increased 

complexity f o r  a h inge l ine  damper, reduced range from a r e s t r i c t i o n  on wing 

f u e l  d i s t r ibu t ion ,  o r  whatever. One poss ib le  counter-example, however, may 

be t h e  "decoupler pylon" of Reed (see  Reed e t  a1.32; t h e  use of nonl inear i ty  
33 t o  prevent excessive s t a t i c  de f l ec t ion  is  discussed by Desmarais and Reed 

The passive approach, which w a s  t he  only recourse 

). 

This c lever  device proposes t o  overcome t h e  usual  f lut ter-speed reduction due 

t o  an aux i l i a ry  tank o r  weapon mounted near a f i g h t e r ' s  wingtip by placing a 

r e l a t i v e l y  s o f t  t o r s iona l  spr ing between primary s t r u c t u r e  and the  supporting 

pylon. Although it  has not  y e t  been adopted operat ional ly ,  the  decoupler shows 

promise of solving a ser ious  problem f o r  a i r c r a f t  types which must car ry  a 

v a r i e t y  of heavy objec ts  beneath t h e i r  wings. . 

Active f l u t t e r  con t ro l  came i n t o  i t s  own on August 2, 1973, when U.S. 

A i r  Force NB-52E No. 56-632 flew a t  21,000-ft a l t i t u d e  10 k t s  f a s t e r  than 

its measured "open-loop" f l u t t e r  speed. The f l u t t e r  mode involved w a s  

symmetrical, with t h e  r e l a t i v e l y  low frequency 2.4 Hz. 
a r t i f i c i a l l y  unstable  wi th in  the  f l i g h t  envelope by means of lead b a l l a s t  

a t tached t o  t h e  noses of two l a r g e  wingtip f u e l  tanks. Nevertheless, t he  

design and p r a c t i c a l  r e a l i z a t i o n  of t h e  B-52 FMCS (F lu t t e r  Mode Control 

System) presages the  u l t imate  use of t h i s  s o r t  of r e l i a b l e  e l ec t ron ic  tech- 

nology on many o ther  a i r c r a f t .  

Hodges.34 

It had been driven 

The development of FMCS is  summarized by 

F l igh t  tests are reported i n  Ref. 35. Space l imi t a t ions  prohib i t  
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a de ta i l ed  descr ip t ion  of t h e  system, but i t  w a s  based on r a the r  conventional 

analog processing appl ied t o  s igna l s  from two p a i r s  of wing-mounted acceler- 

ometers. 

and "f laperons. " 

The e f f e c t o r s  consis ted of symmetrically-deflected outboard a i l e rons  

The NB-52E w a s ,  i n  f a c t ,  a thoroughly-instrumented research a i rp l ane  

intended t o  demonstrate several po ten t i a l  bene f i t s  of a e r o e l a s t i c  control .  

In addi t ion  t o  the  FMCS, i t  ca r r i ed  four  o ther  partially-independent systems. 

Their purposes are q u i t e  w e l l  defined by t h e i r  names: Ride Control, Maneuver 

Load Control, Augmented S t a b i l i t y  and Fatigue Reduction ( the  reference is t o  

f a t igue  damage i n  primary s t r u c t u r a l  mater ia l ) .  A s  space permits, c e r t a i n  

of these p ro jec t s  w i l l  be discussed i n  the  next sect ion.  

Numerous theo re t i ca l  and experimental programs involving the a c t i v e  

modification of a i r c r a f t  f l u t t e r  c h a r a c t e r i s t i c s  had been completed o r  were 

i n  progress a t  the  t i m e  of wri t ing.  

"Drones f o r  Aerodynamic and S t ruc tu ra l  Testing" (DAST), of which a compre- 

hensive summary is  given i n  Murrow and E ~ k s t r o m . ~ ~  

research data ,  from the  wind tunnel and unmanned f l i g h t  tests, on a c t i v e  

cont ro ls  f o r  wings with s u p e r c r i t i c a l  a i r f o i l s  operating through the  tran- 

sonic  speed range. 

One of t h e  most comprehensive is  NASA's 

DAST is  aimed a t  providing 

The f i r s t  model wing resembles t h a t  of a t ransport  

designed f o r  c ru i se  around Mach 0.98. 

small a i l e rons  i n  response t o  s igna l s  from a pa i r  of wingtip accelerometers, 

and two o r  more cont ro l  algorithms are being t r i ed .  

Its " f l u t t e r  suppressor't a c t i v a t e s  

Figure 16 contains a photograph of a s implif ied,  fu l l - s ca l e  vers ion of 

half  t he  DAST a e r o e l a s t i c  research wing (AEW-l), mounted from one w a l l  of t he  

Transonic Dynamics Tunnel, NASA Langley Research Center. The trace a t  the  

bottom of t h e  f igu re  reproduces t h e  accelerometer s i g n a l  from a test  wherein 

t h e  dynamic pressure w a s  r a i sed  t o  above the  uncontrolled VF. 

(design reported by Abel, Newsom and 

serves the  immediate r e tu rn  t o  a s t a b l e  condition where t h e  wing is respond- 

ing only to  flow turbulence. 

t h i s  model demonstrated a 20% increase  i n  the  dynamic pressure of t he  f l u t t e r  

boundary a t  Mach 0.95. 

The system 

is then ac t iva ted ,  and one ob- 

One of t h e  cont ro l  syntheses invest igated on 
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Several experiments on the DAST ARW-1, carried by the modified Firebee I1 
target drone, have subsequently been conducted at NASA's Dryden Flight Research 
Center. 
Summer 1980, the program is expected to continue and will involve different 
wing configurations. 
assist in bringing constructive interaction.between aeroelastic modes and 
active control to a routine status. 

Although the vehicle and wing were partly destroyed by an accident in 

A fund of knowledge can be anticipated, which will 

Ride Improvement and Alleviation of Cyclic Loadinq 

The comfort of passengers and crew during the unavoidable encounters 
which occur with atmospheric turbulence is a significant consideration on any 
aircraft and a paramount one for civil transports. 
associated fuselage accelerations and vibration is reinforced by the fact that 
successful Speasures will often simultaneously extend the fatigue life of many 
structural elements. In the context of favorable aeroelasticity, it is there- 
fore very interesting that large-aspect-ratio sweptback wings appeared in the 
1940's and 1950's primarily because they enable efficient cruising at much 
higher speeds. 
device which could have hardly been improved had that been the principal 
design condition. 

The need to minimize the 

Yet they also provided aviation with a "gust-aPleviation" 

Starting with the B-47, B-52 and first-generation turbojet airliners, 
sweepback has enhanced the "ride" of almost every large jet airplane. 
Although the literature is full of comparative data to demonstrate this 
point, a single example will be cited here which emphasizes that the effect 
is due mainly to the aforementioned angle-of-attack relief from bending defor- 
mation. Codik, Lin and Pian38 published one of the first analyses of wing- 
flexibility effects on the response of such an airplane to discrete gust 
encounters. Figure 17 is their Fig. 5.1. It relates to a vehicle with E.A. 
swept 34' and aspect ratio 9 . 4 3  (see the reference for other data), which I 

encounters a "one-minus cosine" gust of half wavelength equal to 15 times the 
midspan semichord, Abscissa s denotes distance traveled from response initi- 
ation, again measured in semichords. Ordinate K is the fuselage acceleration, 
referred to what this quantity would have been in an encounter with a "sharp- 
edged" gust of the same amplitude, without relief due to bending or unsteady 
aerodynamics. 

0 
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Two kinds of a l l e v i a t i o n  can be  infer red  from the  MX 

The drop below uni ty  of t he  " r i g i  

buildup of wing l i f t  and gradual penetrat ion of t h e  gus t  f 

back. A s  f o r  f l e x i b i l i t y ,  t h e  s o l i d  curve is the  more accura te  and shows a 

second 30% reduction from K = 0.75 t o  about 0.52, which is wholly a t t r i b u t a b l e  

t o  ae roe la s t i c i ty .  

ng" peak is becau 

The introduct ion of a c t i v e  cont ro l ,  of course, provided t h e  designer with 

much more v e r s a t i l i t y  and freedom t o  choose h i s  ob jec t ives  than did t h e  na tu ra l  

p roper t ies  of swept wings. 

a goal by no means incompatible with increased f l u t t e r  speed o r  r i d e  improve- 

ment- has been the  bene f i t  sought from most systems implemented during the  

1960's and 1970's. 

Boeing 747 and SST concept can be c i t e d  as American examples of where the  

technology w a s  employed i n  var ious ways - not  a l l  of them primari ly  aero- 

elastic.  I n  t h e  cases t o  be summarized here, however, s t r u c t u r a l  def lec t ions  

play a key par t .  

Extended s t r u c t u r a l  l i f e  under cyc l i c  loading - 

Such a i rp l anes  as the  U-2, C-5A, F-4, F-16, and the  

The. f i r s t  is the  A i r c r a f t  Load Al lev ia t ion  and Mode S t a b i l i z a t i o n  (LAMS 
39 - cf .  Burr is  and Bender ) system, f i r s t  demonstrated on the  B-52. Both the  

f l i g h t - t e s t  a i rp l ane  and t h e  concepts employed were, inc identa l ly ,  d i r e c t  

precursors of t he  Control Configured Vehicle (CCV) described i n  connection 

with f l u t t e r  s t a b i l i z a t i o n  (Refs. 34 and 35). 
i n  the  1965-69 period. Although ex i s t ing  lateral  and longi tudina l  movable 

surfaces  were employed, t he  system modified the  veh ic l e  by adding hydraulic 

ac tua tors ,  "fly-by-wire," var ious acce lera t ion  sensors,  and analog computers 

t o  implement the  t r ans fe r  functions required f o r  a c t i v e  control .  Three dis- 

crete f l i g h t  conditions were accounted for ,  chosen from a hypothet ical  B-52E 

mission p ro f i l e .  

LAMS w a s  developed and t e s t ed  

Figure 18, adapted from Fig. 1 of Ref. 39, summarizes b e t t e r  than any 

o ther  r e s u l t s  what w a s  proven i n  f l i g h t  f o r  LAMS. Assumed are 575 hours of 

ideal ized "usage" a t  t h e  three combinations of vehic le  weight, a i rspeed and 

a l t i t u d e .  Six s t r u c t u r a l  a l y s i s  s t a t i o n s  are represented, with t h e i r  

loca t ion  numbers given i n  inches from a reference o r i g i n  of coordinates. 
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According t o  standard methods of f a t i g u e  damage est imat ion due t o  cyc l i c  

loading by a realist ic model of turbulence, t he  th ree  ba r s  compare the  expe 

ence of t h e  unaugmented B-52E with those predicted when the  standard S t a b i l i t y  

Augmentation System (SAS) and the  LAMS are ac t iva ted .  The very favorable 
contr ibut ions of LAMS t o  s t r u c t u r a l  ' l i f e  are evident f o r  a l l  s t a t i o n s  except 

t h e  hor izonta l - s tab i l izer  main spar ,  which does not  i n  any event c o n s t i t u t e  

f a t i g u e - c r i t i c a l  s t ruc tu re .  

The B-1 (Fig. 19)  is a bomber intended f o r  pene t ra t ion  a t  such low a l t i -  

tudes t h a t  i t s  crew and s t r u c t u r e  experience considerable cyc l i c  loading from 

turbulence r i s i n g  of f  t he  ground - not t o  speak of rapid maneuver loads and 

o ther  sources of fa t igue .  

is  t o  ensure an acceptable  work environment i n  t h e  crew cockpit .  This is 

achieved by implementing a "St ruc tura l  Mode Control System" (SMCS). 

a classical r e a l i z a t i o n  of t he  ILAF (Identically-Located Accelerometer and 

Force) approach t o  motion control .  Its sensors are longi tudinal  and la teral  

accelerometers mounted i n  the  cockpit  v i c i n i t y .  

l abe l l ed  i n  Fig. 19, which are i n s t a l l e d  with 30' of anhedral so t h a t  sym- 

metric and antisymmetric r o t a t i o n s  can generate,  respec t ive ly ,  pure v e r t i c a l  

and s i d e  forces  a t  a point  c lose  t o  t h e  p i l o t ' s  seat. 

involve two d i f f e r e n t  low-level f l i g h t  conditions,  comparing B-1 response 

with and without SMCS operat ive.  

Among o ther  ob jec t ives  of its a c t i v e  cont ro l  system 

SMCS is 

Effec tors  are the  vanes 

* 
Figures 20 and 21  

(Deta i l s  are furnished on the  f igu res  and 

t h e i r  captions.  SCAS is  the  normal 13-1 s t a b i l i t y  augmentation system.) 

The e f fec t iveness  of t h i s  simple ILAF mechanization i s  depicted espec- 

i a l l y  w e l l  by i t s  tremendous reduct ion of t h e  peak near 3 Hz i n  the power 

s p e c t r a l  dens i ty  of ver t ica l -acce lera t ion  response a t  t h e  cockpit. 

t h e  system endows the  a i rp l ane  with a "damper connected t o  an i n e r t i a l  re f -  

erence," which is a b l e  t o  br ing t h e  v ibra tory  environment a t  a chosen loca t ion  

w e l l  wi thin acceptable  norms. Since t h e  B-1 fuselage is a complicated - 
but  q u i t e  compliant - beam, one observes how t h e  property of f l e x i b i l i t y  

must be present  i n  order  f o r  such a scheme t o  work. 

I n  e f f e c t ,  

* 
Data supplied by courtesy of J. H. Wykes, B-1 Division, Rockwell In te rna t iona l .  
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The U s e  of S t r u c t u r a l  Deformation f o r  Propulsion 

H i s t o r i c a l  Developments 

P e r s i s t e n t  attempts a t  sustained f l i g h t  i n  a i r c r a f t  propelled by osc i l -  

l a t i n g  wings have been made s ince  the  ea r ly  days of av ia t ion  and have con- 

t inued t o  t h e  present .  

tests on a fu l l - sca l e  machine whose wings w e r e  made of mul t ip le  slats which 

"feathered" on t h e  upstroke and closed t o  form a s o l i d  wing on t h e  downstroke, 

but t h i s  proved much too i n e f f i c i e n t .  F i t z  Patrick4' mentions no less than 

20 o ther  inventors  who have b u i l t  model o r  fu l l - s ca l e  a i r c r a f t ;  some of these 
42 are i l l u s t r a t e d  i n  h i s  paper. r e f e r s  t o  an even g rea t e r  number of 

Soviet  inventors,  who flew t h e i r  models a t  na t iona l  contes t s  i n  1949, 1950, 

1951, and o ther  years.  

Long before  t h e  Wrights, Otto Lilientha14' conducted 

Vasi l 'ev 

An elegant ly  simple propulsion scheme, presented i n  Fig. 22, is a motor 

whose s h a f t  is  p a r a l l e l  t o  t he  span which r o t a t e s  an unbalanced mass. 

reac t ion  t o  t h i s ,  t he  a i rp l ane  o s c i l l a t e s  up and down t o  produce th rus t .  

This idea w a s  recent ly  again put  forward by 

carrying a i r c r a f t ,  except t h a t  i t  is the  p i l o t  who is t h e  v ibra t ing  m a s s .  

In 

t o  propel u l t r a l i g h t  man- 

The annual meeting of t he  Experimental A i rc ra f t  Association a t  Oshkosh, 

Wisconsin, is the  gathering point  f o r  present-day inventors  i n t e re s t ed  i n  

orni thopters .  Among them are P. H. Spencer of Santa Monica, who has flown 

gas-driven models. Another is J. L. G. F i t z  Pa t r i ck  of S ta ten  I s land  Com- 

munity College, who has designed and b u i l t  several prototypes -of a man- 

carrying orni thopter .  

ical  theory, 

creatures .  

"bird-bat analog" with the  n a m e s  of t h e  p a r t s  taken from b i rd  physiology. 

A p i c tu re  of a 330-lb version of Pa t r i ck ' s  orni thopter  is presented i n  

Fig. 23. Captive tests have so f a r  m e t  expected t h r u s t  l eve ls ,  but no f r e e  

These vehic les  are intended t o  test h i s  unique empir- 
44 

based on much personal observation of f ly ing  and swimming 

In f a c t ,  t he  patented45 f lapping mechanism of the  wings is a 

f l i g h t s  have been made. 

F i t z  Pa t r i ck  has a l s o  compiled an extensive b i b l i ~ g r a p h y ~ ~  on t he  subject  

In t h e  of na tu ra l  f l i g h t  and i t s  r e l a t i o n  t o  unsteady aerodynamic propulsion. 
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content  of t h e  present  paper, i t  is observed t h a t  t these  devices  

r e l y  on s t r u c t u r a l  f l e x i b i l i t y  t o  e f f e c t  t h e  geomet 

combined sus t en ta t ion  and propulsion. 

mains a hope f o r  t h e  fu ture .  

l ightweight  mechanisms and recent  ga ins  i n  understanding t h e  unsteady aero- 

dynamics permit optimism regarding its attainment.  

The t r u e  man-carry 

Nevertheless,  both improvements i n  the  assoc ia ted  

Aerodynamic Propulsion f o r  Natural  F l i g h t  

This  s e c t i o n  is completed with some words and c i t a t i o n s  on aerodynamics. 

One remarks t h a t  unsteady a i r l o a d  p red ic t ion  f o r  o s c i l l a t i n g  l i f t i n g  sur faces  

w a s  ca r r i ed  out  o r i g i n a l l y  i n  response t o  the  needs of the  ae roe la s t i c i an .  

Its extension t o  the  area of n a t u r a l  f l i g h t  bu i ld s  on t h a t  a e r o e l a s t i c  tra- 

d i t i o n ,  as w e l l  as t h e  long h i s t o r y  of observat ion and speculat ion about 

animal motion through t h e  a i r  and water (cf. Ref. 44, L i g h t h i l l  

Ref. 48). 

47 sand a l s o  

The key problem involves a two- o r  three-dimensional wing which simul- 

taneously executes p i tch ing  and plunging motions, represented by the  quan- 

t i t ies a and h as func t ions  of time. When a l ags  h (pos i t i ve  downward) by 

about 90’ and is of t h e  r i g h t  magnitude, t h e  instantaneous angle of a t t a c k  

is minimal. It a l s o  resembles what is usua l ly  seen i n  nature ,  t h a t  is, 

animal propulsion is observed t o  have a phase angle  of -90’. 
t h e  thrus t -coef f ic ien t  amplitude is near minimum. 

p re fe r  t o  f l a p  t h e i r  wings and t a i l s  i n  t h i s  way because the  propuls ive ef- 

f i c i ency  is markedly higher than a t  o the r  phase angles .  

dimensional theory,  i n  f a c t ,  i t  can approach 100%. To compensate f o r  t h e  

r e l a t i v e l y  small t h r u s t ,  animals opera te  with l a r g e  amplitudes. Further ,  one 

f i n d s  t h a t  t he  leading-edge suc t ion  is a minimum i n  the  n a t u r a l  f l i g h t  region. 

There is  some doubt t h a t  t h e  t h e o r e t i c a l  va lues  of suc t ion  are r e a l i z e d  i n  

f l i g h t .  Thus, propuls ive motion depending mostly on leading-edge suc t ion  w i l l  

s u f f e r  i n  prac t ice .  

A t  t h a t  angle  

But b i r d s  and f i s h  r i g h t l y  

According t o  two- 

Garrick4’ is bel ieved t o  have w r i t t e n  the  f i r s t  highly-mathematical study 

For a i r f o i l s  he estimated t h e  aver- of chordwise fo rces  on o s c i l l a t i n g  wings. 

age t h r u s t  due t o  plunging and p i tch ing ,  showed its dependence on t h e  square 



of the amplitude, and gave theoretical results that pre 
tions more than 25 years later. Obye, among others, conducted wind-tunnel 

experiments that validated the early theory. Important recent contributions 
56 to this difficult subject include the papers of Wu, 51-53 Chopra, 54'55 Tuck 

and Jones. 57 
and quantitative summary of this literature, along with additional airfoil 
measurements and an assessment of aeroelasticity's potentially constructive 
role for man-made machines. 

other publica- 
50 

58 The forthcoming dissertation by Nathan contains a critical 

Concluding Remarks: The Future 

Albeith many were at first unintentional and a few quite unexpected, the 
examples of the preceding sections, when taken together, are believed to prove 
the assertions made in the Introduction. They are felt, however, to provide 
more than merely a career justification for the aeroelastic specialist. 
Especially those which relate to dynamic coupling between the airframe and 
the vehicle's automatic controls permit one, with some assurance, to forecast 

the appearance of "complete CCV's" - that is, aircraft which are designed 
- ab initio in anticipation of favorable interactions among a wholfy-reliable 
control system, rigid-body degrees of freedom - and important modes of elastic 
deformation. 

39 SurelytheLAMS B-52 and, more comprehensively, the program reported 
in Refs. 34 and 35 have demonstrated the technology itself Military air- 
craft are in the development stages with active flutter suppression and gust- 
load alleviation. 
stability augmentation system, 59 whose failure would cause unacceptable flying- 
qualities degradation yet whose record of performance contains no disastrous 
malfunctions whatever.* Within the state-of-the-art are small, high-powered 
and fast-acting hydraulic actuators. They ensure that electrical signals in 
the feedback path are convertible to forces and torques at structural vibration 
frequencies typical not only of large airplanes but of fighters as well. 

Flying operationally are devices like the F-16 longitudinal 

*This statement was written in mid-1980. 
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It is likely that the most significant impediment to the introduction 
of constructive aeroelastic and "servoelastic" technology during the 1980's 
will be the factor. Wit 
authorities conservative 
losses that may result from overoptimism, stand in the way. 
of several other structural and aerodynamic innovations, however, there is 
no doubt about potential CCV benefits in such areas as performance, efficiency 
and passenger comfort. 
their promise will be fulfilled. 

As in the case 

The question which remains is not whether but when 

* * *  
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FIGURE CAPTIONS 

Fig. 1: Two simplified sketc 
picture shows ri 
the wingtips. (From Ref. 7.) 

Fig. 2: Photograph of the "Gossamer Albatross" in flight. 

Fig. 3 :  Influence of flight dynamic pressure q on slope of the curve 
of pitching moment vs. lift, as it might be measured on wind- 
tunnel models of rigid and flexible swep'tback.wings.(Ref. 11). 

Fig. 4 :  Flexible wind-tunnel model resembling wing and fuselage of the 
variable-sweep AD-1. (From Ref. 16; length dimensions are in cm.) 

Fig. 5 :  Curves of pitching moment coefficient vs. lift coefficient for 
model of Fig. 4 at 45' sweep. There are four indicated values 
of dynamic pressure q (Ref. 16). 

Fig. 6: Sketch and title of Patent No. 2 , 4 8 4 , 3 0 8 ,  by Munk (Ref. 18). 

Fig. 7: Theoretical curves of efficiency (TI = Thrust HP/Engine BHP) vs. 
advance ratio for four propeller designs (Ref. 2 0 ) .  V is flight 
speeds, N and D the rpm and diameter of the propeller. 

Fig. 8 :  Three configurations illustrating tip sweepback and reduced 
torsional stiffness for the "conformable" helicopter rotor of 
Blackwell and Merkley (Ref. 2 4 ) .  

Fig. 9: Plots of amplitudes of root bending moment vs. advance ratio, 
experienced at once and twice per revolution, for "aeroelasti- 
cally adaptive" rotors designs of Doman et al. (Ref. 2 5 ) .  

Fig. 10 : Two-bladed Darrieus h zero-bending nt shape; note 

1 Savonius rotors used for starting. 
Aeronautical Laboratory, Bangalore, India.) 
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FIGURE CAPTIONS (Contd.) 

Fig. 11: Horizontal cross-section of straight, rotating blade 
showing instantaneous relative wind Vw. 
incremental angle of attack Aa that might occur on a torsionally- 
suspended blade due to moment of lift L acting through the aero- 
dynamic center A.C. 

Also pictured is the 

Fig. 12: Power-coefficient curves for straight-bladed VAWT, calculated 
by the method of Ref. 27 for four values of amplitude A; of 
cyclic angle of attack. In the definition of "solidity," N, c 

are number of blades, blade chord and lift-curve slope, 
and cb 
respectively. 

Fig. 13: Photograph of mockup of Rockwell International's "SabreBat," 
forward-swept-wing fighter design. 

Fig. 14. Influence of orientation 8 of composite skin plies on divergence 
speed of three uniform, swept cantilever wings. Note that nega- 
tive A means forward sweep (Ref. 28). 

Fig. 15: Curves of trimmed airplane lift coefficient vs. drag coefficient 
for "rigid" YF-16 and two f lexible-wing designs of different ma- 
terials and aspect ratios AR (Ref. 31). 

Fig. 16: Photograph of DAST model in Transonic'Dynamics Tunnel, with accel- 
erometer trace showing flutter suppression by active control. 
(Courtesy of W. H. Reed, 111, NASA Langley Research Center.) 

Fig. 17: Dimensionless fuselage acceleration vs. chordlengths traveled 
after encounter with a "one-minus-cosine'' gust, plotted for three 
idealizations of a swept-wing airplane. (From Ref. 38; see text 
for definitions.) 

Fig. 18: Fatigue-damage rates at six stations on B-52E bomber, estimated for 
the unaugmented airplane and with the SAS and LAMS systems active 
(Burris and Bender3') 
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FIGURE CAPTIONS (Contd.) 

Fig. 19: 

Fig. 20: 

Fig. 21: 

Fig. 22: 

Fig. 23: 

Three-view drawing of B-1 bomber, s 

by Structural Mode Control System ( 

Typical plots vs. time of the indic 
and without SMCS activated. (Courtesy of J. H. Wykes, Rockwell 
International.) 

Measured power spectral density of cockpit acceleration, per unit 
mean-square value of gust-induced angle of attack, plotted vs. 
frequency for the B-1 in random turbulence at the indicated flight 
condition. 
respectively. 

Solid and dashed curves are for SMCS off and on, 
(Courtesy of J. H. Wykes, Rockwell International.) 

Niturich's model airplane which flaps because of an unbalanced 
flywheel. The wings twist about the leading edge as it flaps. 

Photograph of model ornithopter, designed, built and tested by 
J. L. G. Fitz Patrick (courtesy of the inventor). 
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Abstract 

A computational technique is developed that is suitable for performing prelimi- 

nary design aeroelastic and structural dynamic analyses of large aspect ratio lifting 

surfaces. The method proves to be quite general and can be adapted to solving 

various two-point boundary value problems. 

The solution method, which is applicable to both fixed and rotating wing 

configurations, is based upon a formulation of the structural equilibrium equations 

in terms of a hybrid state vector containing generalized force and displacement 

variables. A mixed variational formulation is presented that conveniently yields a 

useful form for these state vector differential equations. Solutions to these equations 

are obtained by employing an integrating matrix method. The application of an 

integrating matrix provides a discretization of the differential equations that only 

requires solutions of standard linear matrix systems. It is demonstrated that matrix 

partitioning can be used to reduce the order of the required solutions. Results are 

presented for several example problems in structural dynamics and aeroelasticity to 

verify the technique and to demonstrate its use. These problems examine various 

types of loading and boundary conditions and include aeroelastic analyses'of liiing 

surfaces constructed from anisotropic composite materials. 

s 

' 

Integrating matrices, which provide a powerful tool for solving daerential 

equations, are discussed in detail, and methods are given for their calculation. 

A derivation and calculation procedure is presented for a new type of maximum 

accuracy integrating matrix based upon orthogonal polynomials. 
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Chapter 1 

Introduction 

A N  EXPANDED UTILIZATION of laminated composite materials in aircraft 

structural design has led to a search for new ways to employ these relatively high 

specific strength a d  stiffness materials. One result of this search has been the 

development of the concept of aeroelastic tailoring of a Mting surface, in which the 

directional characteristics of the composite material are used to synthesize a struc- 

ture with enhanced aeroelastic performance. But along with the possibility for in- 

novative design with structural composites comes greater complexity in the prelimi- 

nary design task. This increased Complexity arises in part from the anisotropic 

nature of the composites materials and in part from the increased design freedom 

allowed by these materials. Because of the additional complexity of the design task, 

new analysis tools are needed to aid the preliminary designer in efkiently evaluat- 

ing the sometimes large number of design concepts available to him. Therefore, 

the p r i m q  objective of thii research has been to develop a simple and versatile 

analysis method compatible with the needs of preliminary aeroelastic and structural 

dynamic design. 

The motivation for this research effort stemmed from a desire to investigate the 

performance enhancements that can be achieved by aeroelastically tailoring large 

aspect ratio composite liftiig surtaces. Essentially, aeroelastic tailoring involves 

B-l 



designing a structure to take advantage of the elastic deformation during loading. 

For static aeroelastic problems, this means controlling the relative amounts of bend- 

ing and torsional deflection of a wing or lifting surface. By maintaining a desirable 

wing deformation shape, or by passively controlling the distribution of aerodynamic 

loading, it is often possible to enhance aerodynamic performance and to extend 

the operating envelopes of a lifting surface. For dynamic aeroelastic problems, the 

coupling between bending and torsion of composite structures provides a way of 

maximizing the dynamic instability (flutter) speed of a lifting surface. Since the 

primary objective of this research is to develop a convenient method for analyzing 

such aeroelastic and dynamic behavior, the above mentioned problems provide some 

excellent, nontrivial examples for verification of the devjsed solution method. At the 

same time, these example solutions hopefully provide a firm foundation for other 

in-depth studies of the aeroelastic behavior of composite structures, including the 

investigation of optimized aeroelastic designs. 

Historically, most aeroelastic analyses of composite structures have been carried 

out by very complex computer codes involving finite element structural methods 

coupled with lifting surface aerodynamics. Unfortunately, these complicated numer- 

.ical approaches can tend to obscure a basic understanding of the important param- 

eters appearing in the analysis and, owing to cost considerations, often preclude 

an extensive study involving numerous design variations. Recent developments, 

such as those of Gimmestad 111, offer a suitable alternative for preliminary design 

investigations . 
A fundamental approach to performing the aeroelastic and dynamic analyses of 

a structure described by one independent spatial coordinate involves formulating the 

ordinary differential equations representing the aeroelastic or dynamic response and 

obtaining analytical solutions to the resulting boundary value problems. Although 

the coupled bending and torsion equations can be formulated, it is often difficult, 
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if not impossible, to obtain analytical solutions for the general cas 

coefficients of the equations are variable. Some useful solutions have been 

however, for cases in which the coefficients in the h e a r  aeroelas 

be written as constants. For instance, solutions to the differential equations for 

divergence and load distribution have been obtained for isotropic metallic wings 

by Diederich and Budiansky [2] and Diederich and Foss 131, and more recently, 

divergence and load distribution solutions for composite swept forward wings have 

been obtained by Weisshaar [4,5]. But with the application of the hybrid state vector 

approach discussed herein, approximate solutions to the differential equations can 

be easily obtained for much more difficult cases involving yariable coefficients. The 

hybrid state vector approach has been utilized by Lehman [SI to obtain a variety 

of aeroelastic solutions, including flutter of composite wings. This type of solution 

L., 

does not require an explicit calculation of structural influence coefficients and can 

utilize various forms of aerodynamic influence matrices. 

A major requirement for a solution method to be used in preliminary design 

is that the method be reasonably flexible in allowing solution of different types 

of problems, and yet easily specialized so that computations can be carried out 

efficiently. Furthermore, it is desirable to have a numerical solution that is easily 

programmable and that makes use of standard numerical methods, thus requiring 

minimal investment in software. It has been found that these requirements are 

well satisfied by a mixed state vector formulation of the differential equations 

combined with an integrating matrix solution procedure-hence, one of the reasons 

for referring to the method as a hybrid approach. 

Other investigators (see the introduction to Chapter 3) have provided initial for- 

ion in structural mechanics 

and have applied this concept to solving a variety of problems. Compared to other 

numerical approaches, such as finite element and finite difference, relatively little 

t of the integrating matrix s 
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has been done to generalize the integrating matrix method. I 

generality to the integrating matrix method, it has 

some of the familiar ncepts employed in finite element analys 

Even though the solution method presented here is applied only to two-point 

boundary value problems arising in aeroelasticity and structural dynamics, the 

approach is, in fact, quite general and can be applied to initial value problems as 

well as to multipoint boundary value problems. The method can also be extended 

to handle systems described by more than one independent variable. 

The compact matrix notation used in the development of the hybrid state vector 

method is intended to aid in the task of programming the solutions, regardless of 

the programming language employed. Solutions for dynamic flutter instabilities 

in Chapter 7, which are iterative by nature, operate quite efficiently in languages 

like F O R T W  or Pascal. The hybrid st?te vector solution formulations, however, 

are especially suited to the matrix oriented programming language APL. In fact, 

the hybrid state vector method presented here, when coupled with APL, forms an 

extremely powerful interactive problem solving tool. It is further anticipated that 

the hybrid state vector solutions, since they are formulated in terms of simultaneous 

matrix operations, will be readily adaptable to parallel processing techniques. 

In Chapter 2, a mixed variational formulation is presented for obtaining the 

h e a r  state vector differential equations of structural equilibrium. This formulation 

is given for structures that can be described by one independent spatial variable. 

By casting the aerodynamic and inertial loads acting on a structure in terms of 

the displacement state variables, the state vector equations can be expanded into 

s suitable for aeroelastic and structural dynamic analyses. A detailed 

an anisotropic plate- 

am that is constructed from laminated composite materials. These equations are 

ions is then presented to descri 

reserved for later use in the example solutions of Chapters 6 and 7. 
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Chapter 3 gives a general derivation of integrating matrices and describes how 

they are applied to the integration of either continuous or discontinuous integrands. 

Several diflerent types of integrating matrices are discussed, including maximum 

precision integrating matrices based upon orthogonal polynomial approximations. 

The concept of a dzerentiating matrix is also introduced. 

Chapter 4 describes how integmting matrices are used to formulate solutions 

for the discretized versions of the state vector equations derived in Chapter 2. By 

using matrix partitioning techniques, it is then shown that reduced order matrix 

equations for the displacement variables can be obtained by eliminating the force 

variables. 

In Chapter 5,  sample solutions are presented for simple beam and rod problems. 

These examples illustrate the application of the hybrid state vector method to 

the solution of two-point boundary value problems. Continuous and discontinuous 

parameter problems are demonstrated along with various tybes of boundary and 

loading conditions. Numerical results are compared with analytical results to 

evaluate the accuracy of the integrating matrix solutions. 

Chapter 6 presents sample solutions for divergence and elastic lift distribution 

of composite wings. For the composite wings, solutions are given for the case of 

forward aerodynamic sweep. Brief comparisons are made with alternate solutions 

available for these problems. 

Chapter 7 demonstrates solutions for flutter instabilities of both isotropic and 

composite wings. The isotropic wing flutter solutions are compared with known 

analytical solutions. 

A brief summary and recommendations for additional research are given in 

Chapter 8. 
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Chapter 2 

Hybrid State Vector Equations 

A GENERAL FORMULATION of the structural equations will be presented 

which casts them into a state vector form involving a coupled system of first order 

differential equations. The state vector that appears in the following derivations 

will be termed a hybrid state vector in the sense that it is derived from a so-called 

mized formulation involving both stress and displacement variables. Although this 

formulation is not entirely new to structural mechanics, it has not seen extensive 

use, nor has it been included among the everyday tools of most engineers work- 

ing in structures and structural dynamics. However, some very noteworthy de- 

velopments of improved numerical procedures based on mixed formulations com- 

bined with finitedifference solutions have been reported by Noor, Stephens, and 

F’ulton [7]. Additional work presented by Noor and Stephens [8,9] has further 

demonstrated both the simplicity and high accuracy of such mixed formulation 

procedures. Results obtained by Stroud and Mayers 1101 indicate that a numerical 

solution based upon direct application of a mixed variational principle also offers 

superior accuracy and convergence, especially for bending-moment solutions. More 

recently, investigations by Steele [ll], Steele et ul. 1121, and Steele and Barry [13] 

have indicated that mixed state vector formulations of the diiferential equations 

in conjunction with asymptotic solutions can be advantageous for both analytical 
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investigation and numerical calculation. The present investigation will demonstrate 

that a simple and highly accurate numerical solution procedure is obtained by com- 

bining the mixed state vector formulation of the structural differential equations 

with an integrating matrix solution approach. It is worth noting that the transfer 

matrix method of structural solution also employs a mixed state vector similar to 

the one used in the following formulations. 

The derivations to be presented employ a mixed variational formulation that 

can be consistently applied to a broad class of structural problems. This formula- 

tion, which will be discussed in Section 2.1, involves terms that are expressible as 

a product of generalized stresses and strains in addition to other terms that can be 

related to the complementary energy. For systems with linear stress-strain behavior, 

the complementary energy is, of course, the same as the strain energy. Therefore, 

in the context of linear systems, this formulation is equivalent to the more usual 

stationary potential energy approach. As will be demonstrated, the mixed varia- 

tional formulation provideq a convenient way of expressing the energy functional 

and allows a direct determination of the state vector equations in a desirable form. 

There are also many classical structural problems for which diflerential equa- 

tions already exist. In these instances, it may be convenient to recast these equations 

into a matrix form directly and dispense with the formality of rederiving them. As 
many readers are well aware, it is possible to take higher order differential equations 

and convert them to an equivalent system of first order equations. But this process 

becomes increasingly diEcult as the complexity of the system increases. Regardless 

of how one chooses to obtain the differential equations describing a structural prob- 

lem, there is a preferred way to write the state vector equivalent. The preferred 

state vector form will be shown to arise naturally from a mixed variational for- 

mulation. As will be discussed in more detail in later sections, the mixed (hybrid) 

state vector form of the equations, with fundamental unknowns consisting of both 
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generalized force and displacement 

tion that proves quite us 

The equation derivati 

primary advantage of 

problems with dif€erin 

the equation formulat 

necessarily deal with the matrix terminology of discretized systems. An additional 

reason for adhering to matrix notation is that several intermediate points exist at 

which further analytical formulation and simplification can be put aside in favor of 

numerical computation. If a matrix formulation is used throughout, it is easy to 

begin numerical calculations at these intermediate points. 

2.1 Variational Formulation of State Vector Equations 

A mixed variational formulation is presented here for the hybrid state vector 

equations that describe structural equilibrium. For the interested reader, some 

rather general examples of mixed variational statements can be found, for instance, 

in Nemat-Nasser [14]. Also, brief historical accounts of mixed variational methods 

in solid mechanics appear in both Nemat-Nasser 1151 and Reissner [la]. In these 

accounts, the work of a number of investigators is cited, including the work of 

authors such as Hellinger, Reissner, and Washizu. In the literature in general, the 

mixed variational formulation invo ndent variation of both stress and 

displacement variables is usually referred to as a Reissner (or sometima Hellinger- 

involving independent variation of 

d to as a Hellinger-Reissner-Washizu 

ent of the mixed state formulation. In the work presented here, the d 

V ion 

displacement variables are independently varied to yield the appropriate equations 
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and boundary conditions. A similar development of mixed state vector equations 

from the Reissner formulation is given in Ref. Ill]. 

Although the Reissner formulation is applicable to either linear or nonlinear 

problems, the following presentation will restrict consideration to the solution of 

linear aeroelastic and structural dynamic equations. From nonlinear equations, it 

is often feasible to obtain a set of linearized equations by perturbing about an 

appropriate nonlinear solution. This might be useful, for example, when consider- 

ing problems with geometric nonlinearities. The linear perturbation equations ob- 

tained by such an approach fall within the scope of the following linear analyses. 

When considering future extensions of the present work to nonlinear analyses, it 

is anticipated that the Reissner principle should prove valuable for problems with 

nonlinear rnaierial behavior. Some important illustrations of the application of the 

Reissner principle to problems involving nonlinear material behavior are given by 

Nimmer and Mayers (181 and Anderson and Mayers [19]. 

For those problems that can be described by a single spatial variable, z, the 

mixed variational formulation can be written in general terms as 

(2.1) 

where the prime on y indicates partial differentiation with respect to z only. The 

Euler-Lagrange equations resulting from variation on z are 

Since the variation is being taken only with respect to the spatial variable, the time 

variable simply follows along as a parameter. For static problems, time disappears 

from the previous equations. 

The next step in the formulation is to give an appropriate form of the functional 

appearing in Eqs. (2.1-2.2). When linearitg. is invoked, it is then possible to express 
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the functional in the following convenient form: 

1 U - y"0y - ,yTKy + pTy (2.3) 

where K is a spatidly variable symmetric matrix containing structural relations, 

p contains the external loads, and 0 is defined such that (0 - DT) 

skew-symmetric matrix with unit elements. 

The state vector, y, is specified in the form 

where YF are generalized forces and yo are generalized displacements. This form 

for y k the same as would appear in a transfer matrix structural solution based 

upon a "mixed" finite element force-displacement relationship. The precise nature 

of the matrix terms appearing in the above representation of the functional will be 

clarified with specific examples. 

Next, substituting Eq. (2.3) into 

tiation yields the equilibrium equations 

(2.2) and performing the indicated differen- 

in which 

Noticing that 

-rf - KY + p = o 

J-' = JT = -J and hence J ~ J  = I ,  

(2.5) 
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where 

Z=JK and a=Jp. (2.9) 

Eq. (2.8) will be the starting point for analyses to be presented in later chapt 

Rather than using the procedure demonstrated above, Eq. (2.5) and 

ing boundary conditions can also be obtained by substituting Eq. (2.3) i 

and applying integration by parts. The consistent boundary conditions obtained 

with this approach are one of the key advantages of a variational development. 

Corresponding to the state vector equations in Eq. (2.8), the boundary conditions 

are obtained as 

C 
yTDT(6y)J, - 0. (2.10) 

Fortunately, in the state vector formulation, these boundary conditions always 

remain quite simple. This will prove to be especially advantageous when dealing 

with anisotropic structures, for which other formulations can yield coupled and 

considerably more complicated €or= of the boundary conditions. 

At this point, a simple example describing the lateral bending deflection of a 

beam will help to clarify the nature of the matrix terms appearing in the foregoing 

derivation. The example presented here follows an example given by Steele [ll) for 

a Timoshenko beam. In the notation used in this study, the functional in Eq. (2.3) 
can be written for a Timoshenko beam in the form 

(2.11) 

where the moment res r r  

of the normal is 7; the normal displacement is o; the shear compliance is Be; and 

the load per unit length is p. Prime, of course, denotes differentiation with respect 
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der to obtain a resemblance to the ression in Eq. (2.3), 
be rewritten as 

u - Mzr’+ V z d -  &Ef) 1 -1 2 -1- Be 

For linear systems, this functional can be constructed by subtracting the com- 

plementary energy from the product of stresses and strains, after which a slight 

rearrangement yields Eq. (2.12). AIS0 note that the nature of U, as used in this 

presentation, implies that it has been obtained by integrating an energy density 

functional over the cross section of the beam. 

If the state vector is now defined as 

y={Mz vz 7 w}= (2.13) 

then p, 0, and K in Eq. (2.3) take on the forms 

(2.14) 

(2.15) 

(2.16) 

dure for arriving at this form of the matrix equations first 

specifying the state vector, y, which is taken to be the same vector as would be 



obtained in a mized, or hy lation of the equilibrium 

equations. Such a formulation is discussed, for example, in Chapter e 

and Gallagher 1201. This state vector form is also the same as that used in the 

transfer rnatriz format of structural analysis. It is assumed here, as shown in Eq. 
(2.4), that y will always be partitioned into two sets; one set c 

forces and the other contains 

specified in this way, then p is chosen 50 that one obtains the proper potential of 

the external loads. 

r ce-displacemen t 

ed displacements. Once the 

After choosing the state vector, then 0 must be determined such that the 

derivative terms in the functional are given by the first group on the right hand 

side of Eq. (23). This requirement is met by specifying that D always be a square 

matrix having the same form as that given in Eq. (2.15); that is, it should have the 

same structure as Eq. (2.15) and should always contain only zero and unit terms. 

One can refer to Eq. (2.6) to see that 0 must be specified in this way to insure that 

J be an antisymmetric matrix with unit elements. I€ J is as shown in Eq. (2.6), 

then Eq. (2.5) and Eq. (2.8) are said to have a symplectic character. The symplectic 

nature of these equations means that an especially simple relationship will exist 

between the fundamental solution of the system in Eq. (2.8) and its adjoint (see 

Eq. (G.17) in Appendix G). For a description of this useful property of symplectic 

systems, refer to page 157 of Bryson and Ho [21]. 

Other remaining terms in the functional are now determined by specifying K, 

atrk %'he elements of K contain spatially 

d fixed structu a1 kinematic relationships. It is 

which is restricted to be a 

ndent const it u tive t 

usually easy to determine the elements of K by ple observation. 

d , it is then clear that a and 

2 in Eq. (2.9) become 
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a=(O p 0 O}*, (2.17) 

(2.18) 

It should be noted that the right hand side of Eq. (2.18) displays a particular 

form that will show up again, even for much more complicated problems than 

the one discussed above. As mentioned in the introduction to this chapter, for 

many simple problems it is not necessary to follow through the complete equation 

derivation as just presented. In fact, once one becomes familiar with the matrix 

formulation given here, it is usually easy to write down Eq. (2.18) directly, at 

least for relatively simple systems. However, for considerably more complicated 

situations, the variational approach provides a consistent method for formulating 

equilibrium equations and boundary conditions. In addition, the mixed variational 

formulation also demonstrates a "natural" form of the state vector equations. Later, 

Section 4.2 will show that this natural form, when coupled with an integrating 

matrix solution procedure, provides significant savings in the numerical solution 

by allowing convenient analytical simplification. One should also keep in mind 

that with knowledge of the natural form of the equations it is possible to recast 

equations derived by other methods. To give one example, the nonlinear equations 

of an initially bent and twisted rod derived in Chapter 18 of Love I221 and examined 

by Ojalvo and Newman [23] cam be linemized and recast into the desired form. In 

fact, a similar approach has been followed by Nitzsche [24] to obtain hybrid state 

vector equations for the aeroelastic analysis of vertical axis wind turbines. 

B-15 



2.2 Aeroelastic and Structural Dynamic Equations 

The general equations presented in the previous section can be specialized to 

both aeroelastic and structural dynamic problems by being more specific about the 

type of loading. For both aeroelastic and dynamic problem the loading can be 

related in some way to the displacements of the structure (i.e., the displacement 

states of the structural state vector). In static aeroelastic problems the airloads are 

directly determined by the deformed shape of the structure, whereas in dynamic 

problems, the inertial, aerodynamic, and structural damping loads are related to 

time rates of change of the structural deformation. The discussion in this section 

will focus on the way in which these loads appear in the structural equilibrium 

equations, and the form of the equations to be used in. later analyses will be given. 

First, static aeroelastic problems will be analyzed by the usual procedure of 

breaking the total external loads acting on the system into a summation of those 

loads that act on a rigid structure plus perturbation loads due to elastic deformation. 

Therefore, the loads vector a, which first appeared in l3q. (2.81, can be rewritten as 

where af is a vector of the nonhomogeneous loads acting on a rigid structure, 

q is the dynamic pressure, and A is developed from an aerodynamic influence 

relationship. In fact, for the disc version of these equations, A contains terms 

m an aerod nce matrix. Additionally is partitioned 

displacement subsets o€ the state vector, only one of 

at submatrix providing forces 

various aerodynamic theories 

analyses of Chapters 5-7 will primarily use aerodynamic strip 

corresponding to the force 

theory. 
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The static aeroelastic equations are now obtained by substituting 33q. (2.19) 

into Eq. (2.8). The result is 

f==:Y-qAY-.r, (2.20) 

with y = y(z). When the dynamic pressure is specified, then Eq. (2.20) is simply a 

system of equations for y. On the other hand, if the nonhomogeneous term ar is 

set to zero and the dynamic pressure is left unspecified, then Eq. (2.20) leads to a 

divergence eigenvalue problem, with q being the divergence dynamic pressure. 

Now consider a dynamic aeroelastic system. The airloads still depend in some 

way on the displacements, but now time has entered the equations. Furthermore, 

inertia-loads, and possibly damping loads, must be included in the analysis; as 

mentioned earlier these are also related in some way to the displacement. The 

approach taken here will be to remove the differential time dependence of the 

dynamic equations by Laplace transformation on time, thereby obtaining equations 

with an algebraic dependence on the Laplace variable, a. This has an added 

advantage for unsteady aeroebtic problems since the unsteady aerodynamic terms 

for general motion are conveniently described in the Laplace domain. 

After Laplace transformation, one finds that the homogeneous state vector 

equations suitable for aeroelastic stability analysis can be written in the form 

where ji - j7(z,s) and the matrices M, C, and contain, respectively, the mass, 

damping, and unsteady aerodynamic terms. (The hat symbol denotes a Laplace 

transformed variable). As mentioned for the static aeroelastic problem in Q. (2.20), 

the matrices expressing any form of displacement dependent loading (here, M, C, 

and Q) have only one nonzero partition, namely, the partition that multiplies the 

displacements in the state vector. 
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In order to specialize 33q. (2.21) to free 

and aerodynamic terms, C and Q. For un 

u is purely imaginary. Therefore, if one takes u - j w ,  then the free vibration 

counterpart of Eq. (2.21) is given by . 

(2.22) 

Clearly, dynamic response problems in the time domain can also be accommodated 

by including forcing terms on the right hand sides of the time domain versions of 

Eqs. (2.21) and (2.22). 

2.3 Anisotropic Beam Equations 

A simplified anisotropic platebeam model is presented here for which the 

resulting equations are suitable for analyzing aeroelastic phenomena of large aspect 

ratio lifting surfaces. The purpose for developing these equations is twofold: first, 

they will help clarify the application of the foregoing general formulation and 

second, these equations will later be used in numerical examples of aeroelastic 

analyses. The assumptions used in developing the equations for the platebeam 

model will be discussed briefly here, but it should be noted that they are similar to 

those employed by Weisshaar [4,5] to describe laminated composite box beam lifting 

surfaces. As a consequence, the following equations will be specialized somewhat to 

deal with structures whose anisotropic behavior arises due to laminated composite 

construction. A summary of composite plate lamination theory is presented in 

With the aid of the Cartesian coordinate system presented e lifting surface 

model in Fig. 1, the aeroelastic equations will be developed for aerodynamic strip 
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sections taken normal to the structural reference axis. The structural reference 

axis is specifxed to be coincident with the z-axis, also shown in Fig. 1. Primarify for 

reasons of convenience, it will be assumed that this reference axis coincides with the 

geometric middle surface of the structural box. Although the reference axis location 

is arbitrary, this particular choice follows the conventions used for development of 

the composite plate constitutive relations. For this study, it is assumed that the 

structural reference axis is a straight line which, of course, will be swept accordingly 

as the wing aerodynamic sweep angle, A, changes. When considering aerodynamic 

surfaces with structural axis curvature, then the present approach should be adapted 

to take this curvature into account. It is further assumed that no appreciable 

chordwise deformation occurs in cross sections normal to the structural reference 

axis, so that wing deformation is only a function of the spanwise coordinate, z. 

Applying these assumptions means that the deformation of the plate-beam model 

can be represented in terms of a bending deflection w(y), positive downward, of the 

reference axis, plus a rotation a(y ) ,  positive nose-up, about this axis. For problems 

dealing with rotating beams, an additional displacement variable u, along the z-axis, 

must be added to describe the deformation. In the presentation given here, bending 

deformation in the z-y plane is neglected. This lead-lag deformation can be easily 

added, however, in a more detailed analysis. 

As the next step, the in-plane strains and curvatures can be written in terms 

of the foregoing displacement variables by applying the differential relationships 

that describe strain-displacement for a plate (see Appendix C). But first, an addi- 

tional remark concerning shearing deformations should be made. Since standard 

lamination theory assumes no transverse shearing effects, this assumption will be 

adhered to here, but only for the composite laminate. That is, the shearing defor- 

mation of the laminated portion of the structure will be assumed negligible, but the 

gross shearing behavior of the overall structure can still be included. For instance, 



Fig. 1. Lifting Surface Model 

standard composite structure fabrication quite often employs thin laminated face 

sheets placed over shear webs or a thick deformable core material. The transverse 

shearing effects induced by the webs or the core material can be included by adding 

a shearing energy to the energy functional. The transverse shear effects included 

here are assumed to arise in this manner. At the same time, it c a ~  reasonably be 

assumed that the composite covm sheets carry most of the bending stresses (and 

bending energy) of the structure. 

a composite plate as 



where an integration is to be performed over the chord length of the structural 

box. The composite plate compliance matrices A*, B*, and O* are developed in 

Appendix C. Also found in the same appendix are descriptions of the resultant stress 

and moment vectors n and m, respectively. Note that the transverse shear, Vx, 

has been included in Eq. (2.23) along with a transverse shear compliance term, Be. 

The variable 7 represents rotation of the normal to the neutral axis measured with 

respect to its initially undeformed position. In the absence of shearing deformation, 

it is assumed that normals remain normal so that 7 is equal in magnitude to the 

slope of the neutral axis. 

By introducing the assump%ion that the primary stresses are those that occur in 

the spanwise direction due to bending and axial stretching, the stress and moment 

resultants can be approximated as 

Furthermore, considering the deformation assumptions discussed earlier in this 

section, the midplane strains and bending curvatures can be approximated by 

eo= {u'o 0 of,  E -  ( ( r ' f y a " )  0 2a'}=, (2.25) 

where the prime denotes differentiation with respect to z. All of the variables in Eq. 

(2.25) are assumed to be functions of z only. Next, substituting Eqs. (2.24-2.25) 

into l3q. (2.23) and performing the indicated integration yields an expression from 

which the state vector and other terms appearing in Eq. (2.3) can be readily defined. 
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The resulting state vector is 

Y = { &  & v, 2&., u 7 &IT, (2.28) 

with 

Having defined the state vector in this way, the differential equations can be deter- 

mined by the approach laid down in Section 2.1. 

It is convenient at this point to introduce a nondimensionalized version of the 

resulting anisotropic beam equations. The nondimensional differential equations, in 

the form of Eq. (2.8), can be written as 

' 0  0 0 0 0 0 0  

0 0 1 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

where the nondimensional coordinate and displacement variables are 

z U w w=- 
C '  

U-- 
C '  

z=- 
C '  

It is also convenient to define 

I (2.28) 

(2.29) 

(2.30) 



which are the reference values of bending and torsional stzness in terms of the 

appropriate composite stiftnesses derived in Appendix C. (The subscript R designates 

a reference value.) In terms of the reference bending stiffness, other nondimensional 

parameters appearing in Eq. (2.28) are the force and moment resultants and external 

loads 

and the nondimensional composite compliances 

and finally, the nondimensional shear compliance 

(2.33) 

It should be noted that the state vector equations presented in Eq. (2.28) 

are easily extended to both static and dynamic aeroelastic analyses by adopting 

the approach of Section 2.2 in which the load terms (i.e., inertia, damping, and 

aerodynamic) axe expressed in terms of the displacement states of the structural 

state vector. The nondirnensionalization of the load terms remains the same as 

that given in Eq. (2.31). F’urther use will be made of Eq. (2.28) when examining 
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aeroelastic behavior of composite lifting surfaces in Chapters 6 and 7. As a final 

observation about the anisotropic equations presented here, the equivalent equations 

representing isotropic structures can be obtained by simply replacing the composite 

compliance terms by isotropic compliances. 
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Chapter 3 

Integrating and Differentiating Matrices 

AN INTEGRATING MATRIX approach will now be developed to solve the state 

vector equations derived in Chapter 2. The solution of such equations can often 

be a dacu l t  task since these equations, with their boundary conditions, take the 

form of two-point boundary value problems. Additional complexity is added for 

those equations that have nonconstant coefficients. By necessity, one is forced to 

consider numerical solutions since analytical approaches can be exceedingly difficult, 

if not impossible, for all but the simplest of cases. The primary objective of this 

chapter is to discuss the development of integrating matrices, which provide the 

basis for a simple and efficient concept for numerically solving two-point boundary 

value problems. Applications of the integrating matrix to the solution of diflerential 

equations will be considered in the next chapter. It is hoped that the discussions here 

will lend some perspective to the integrating matrix concept as a general numerical I 

tool. 

In Section 3.1, a general derivation is presented for integrating matrices that 

are suited to the integration of continuous functions. A new type of maximum 

. precision integrating matrix that is developed from orthogonal polynomials will also 

be introduced. Some methods are discussed in Section 3.2 for applying continuous 

integrating matrices to the piecewise integration of discontinuous functions. Finally, 
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Section 3.3 discusses some of the aspects of a related topic, differentiating matrices. 

Although numerical solution by an integrating matrix procedure is not an en- 

tirely new idea, this approach has seen relatively little attention and development 

compared to other well known numerical tools such as finite element and finite 

difference. In fact, only a handful of investigators have contributed to the integrat- 

ing matrix method. One of the first applications of the integrating matrix method to 

problems in structural mechanics was presented in Russia by Vakhitov [ i s ] .  In this 

country, Hunter (271 is credited with much of the initial development of the integrat- 

ing matrix procedure. As mentioned by Hunter, however, an integrating matrix was 

also used by Spector [28] to simply evaluate the integrals of an asymptotic "integral 

series" solution for nonuniform beam vibration. Other major contributions to the 

application of integrating matrices (including nonlinear problems) have been made 

by White and Malatino 1291 and Kvaternik, White, and Kaza [30,31]. Most of their 

analyses were for vibration and stability of rotating beams. Vakhitov I321 has also 

employed integrating matrices for a circular plate analysis, while Levashov [33-351 

has used integrating and dserentiating matrices in the context of a generalized Ritz 

method. And recently, Lakin [36] has made useful contributions to the formulation 

of integrating matrices for arbitrarily spaced grid points. 

Despite the fact that most of the applications in this work will be confined to 

structural mechanics, the developments in this chapter are quite general and can be 

applied to problems in other areas as well. It is interesting to note that the integrat- 

ing matrix technique can often be closely related to discretization methods used in 

other areas of research. To pick a single example out of many, one could reexamine 

the spline series solutions used by Schneider and Reddy [37] to solve for optimal 

nonlinear thrust vector controls for guidance of an atmospheric interceptor. This 
problem can be solved in essentially the same manner with an integrating matrix 

formulation, where the integrating matrices are developed from the appropriate 
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spline approximations. Many parallels c.an'also be drawn with the finite element 

method. In fact, the integrating matrix approach can be considered as a special 

type of collocation finite element method. The presentation given here, however, 

will differ from the formalism of the usual finite element approach. 

As mentioned by Hunter [27], the integrating matrix also provides a useful 

tool for initial value calculations. Furthermore, the integrating matrix method 

is applicable in either linear or nonlinear situations. In the applications to be 

considered here, the focus will be on linear boundary value problems. 

3.1 Integrating Matrices for Continuous Integrands 

This section presents the basic development of the integrating matrix. As a 

preliminary requirement, it is assumed that the functions to be integrated are a 

continuous function of the spatial variable. More specifically, the integrating matrix 

development will be based upon integration of continuous polynomials that approx- 

imate the functional behavior of the structural state variables. The requirement 

of continuity, however, does not prove to be a restriction on the solution of more 

general problems. As will be shown in the next section, integrating matrices can 

be developed for piecewise continuous functions by extending the results presented 

here for continuous functions. With piecewise continuous functions, solutions are 

obtainable for almost any practical problem. 

First, a review will be given of the fundamental theory of the integrating 

matrix. This review will be independent of a specific polynomial approximation. 

The viewpoint presented here will parallel the presentations given by both Hunter 

[27] and Lakin [36], in which it is assumed that the function to be integrated 

can be represented by a polynomial of given degree. Appendix A specializes this 

fundamental presentation to the case of integrating matrices based upon Jacobi 
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polynomials. 

It should be noted that it is possible to derive many different Qpes of integrating 

matrices, with each type dependent upon the form of approximation employed. One 

can easily formulate special purpose integrating matrices intended for a specific 

application. In this respect, the integrating matrix approach is very similar to finite 

element procedures that use element types suited to a given problem. 

The primary objective of the integrating matrix approach is to develop a 

numerical procedure for performing indefinite integrations. In contrast with initial 

value integration schemes, which are commonly used for solving daerential equa- 

tions, the integrating matrix is formulated instead from a numerical quadrature. 

A quadrature is simply a numerical integration rule for integrating between fixed 

limits. An ixkegrating matrix developed from such a quadrature rule is especially 

suited to solving boundary value problems since the region of integration is fixed 

by the boundaries. As pointed out by Hunter [2'7], however, the integrating matrix 

is just as easily applied to initial value problems. 

To begin, let f(z) be a continuous function on an interval [u,b].  In addition, 

suppose that a discrete set of N + 1 grid points, zo, 21, . . . , ZN, has been chosen on 

this interval such that 

0-20 < zl < ... < z ~ = = b ,  

and let the function values at these points be given by 

(3.1) 

In general, the points si can have either equal spacing or unequal spacing; ulti- 

mately, this will be determined by the nature of the approximations used for j (z ) .  

Furthermore, the number of points chosen is somewhat arbitrary, but for an nth 
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degree polynomial approximation to f(z) there must be at least n + 1 grid points, 

where n<N. The N+1 grid points on [u,b] determine N subintervals [ z i , ~ i + ~ ]  (i  = 

0,. . . , N - 1). In general, a consecutive set of n + 1 grid points will be designated by 

the sequence zm, zm+l, . . . , zm+n, where the subscript m denotes the starting grid 

point for the sequence. 

Assuming that f(z) can be approximated by an nth degree polynomial, then 

an approximation to f(z) on any subinterval [zi,zi+l] C&I] be obtained in terms of 

the values fi = f(zi) given for a consecutive set of n + 1 grid points containing that 

subinterval. An appropriate approximation to f(z) can be obtained by any of several 

different approaches, but the most useful methods include interpolation, spline 

fitting, and least-squares fitting. In the work presented here, only the interpolation 

method will be discussed in detail. If any type of approximate data is involved, 

.. 

however, a least-squares approximation would be preferable. Lakin [36] presents 

a nice discussion of the least-squares approach as applied to the determination of 

integrating matrices. 

By integrating the approximation to /(z) over any subinterval and arranging 

the result as a linear combination of the fi's, one obtains a convenient numerical 

description of the integration. For a typical subinterval on [a,b] this would appear 

where the W ' s  are weighting terms that mise from integrating the approximation to 

f(z). An approximation to ,,b f(z) dz is now easily obtained by noting that J' f( z) dz 

can be written as a sum of the integrations for each of the N subintervals. That is, 
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The integrating matrix representation for the approximate integration of f(z) 

contains the same information as expressed in Eqs. (3.3-3.4), but puts it in a compact 

matrix notation suitable for matrix manipulation. First, define the column vectors 

(31 {fl by 

and 

With these definitions, the integral in Eq. (3.3) can be expressed for all subintervals 

in the matrix- notation 

{ 3 )  - W f )  9 (3.7) . 
where the subscript n indicates the degree of the polynomial used to approximate 

f(z). W, is an ( N  + 1) x (N + 1) weighting matrix. Since the first element of { 7 )  is 

zero, the first row of W contains only zeros. 

A summation of the subinterval integrations can now be formally obtained 

by premultiplying both sides of &. (3.7) by an (N + 1) x (N + 1) lower-triangular 

summing matrix, 

for which S+- = 1 when irj but S i j  - 0 if i < j .  As a result of this summing 

operation, if (3) is defined to be the the N + 1 dimensional column vector, 
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then the integrating matrix relationship can be written as 

VI = L{f 1 

where the integrating matrix L is defined by 

(3.10) 

L = sw,. (3.1 1) 

Incidentally, the summation indicated by S is most easily carried out in practice by 

simple summing, rather than by matrix multiplication. 

As can be seen from Eq. (3.11), the derivation of the integrating matrix L relies 

primarily on the determination of Wn in Eq. (3.7) because the summing matrix 

S is known a priori. It is important to note that the integrating matrix depends 

on the polynomial approximation employed and on the number and spacing of the 

grid points, but it does not depend on the function values f; at the grid points. 

Therefore, the integrating matrix has a separation of grid dependence and function 

dependence. Furthermore, the integrating matrix can now be viewed as a linear 

matrix operator that performs integrations via a simple matrix multiplication. 

Although the foregoing discussion has presented the general procedure to be 

followed in deriving an integrating matrix, it is now worthwhile to focus a bit more 

closely on integrating matrices that can be derived from Orthogonal polynomials. 

"laditionally, orthogonal polynomials have been used as a foundation for well- 

conditioned numerical procedures. The motivation for deriving integrating matrices 

based upon orthogonal polynomials actually stems from the fact that orthogonal 

polynomials form the basis for high accuracy quadrature rules of the Gaussian 

type (cf. Section 5.4 of the text by a n t e  and de Boor 1381). For these Gaussian 

integration rules, the function to be integrated can be written as a product of a 

sufficiently smooth function o(z) and a nonnegative integrable weighting function 
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d(z). That is, the integral of f(z) over (a,b) is put into the form 

where 

rb rb 
(3.12) 

(3.13) 
% .  

As shown in Section 5.4 of Conte and de Boor [38] and Section 7.1 of Krylov 

[39], a quadrature of the highest possible precision for a given number of grid 

points is obtained when the polynomial approximation to g(z) is orthogonal to the 

weight function 9(z) over the interval (a, b). In addition, the nodes (grid points) are 

specified to be the zeroes of the appropriate orthogonal polynomial. These nodes 

are nonevenly spaced and are all inside of the end points a and 6. 

But to be useful for the development of integrating matrices, the concept of 

an “optimal” quadrature must be extended one step further to allow nodes to be 

located exactly at the end points of an interval. The requirement for end point nodes 

becomes obvious when considering boundary value problems; these problems require 

that boundary conditions be satisfied precisely at the end points of the interval. The 

basic theory for the development of optimal quadratures having preassigned nodal 

locations is discussed in detail in Chapter 9 of Krylov [39], therefore, it will not be 

discussed in depth here. One point worth noting, however, is that fixed nodes at 

the end points give rise to a special weighting function, flz). This natural weighting 

function is a result of end point terms that appear in the interpolation of &). 

Because of the form of the weighting function that arises when end points of an 

interval are included, certain members of the Jacobi polynomial family turn out to 

be the appropriate orthogonal polynomials to use in deriving optimal quadratures. 

For this reason, the resulting integrating matrices will be referred to simply as 

“Jacobi” integrating matrices. Appendix A contains a detailed dmcussion of the 
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calculation procedure for Jacobi integrating matric nd Appendix B tabulates the 

corresponding weighting matrices up to n + 1 = 10. To give an idea of the accuracy 

of the quadrature on which these integrating matrices 

degree 5 2n - 1 will be integrated exactly. 

e based, all PO 

For convenient use in later calculations, weighting matrices tabulated originally 

by Hunter [27] are also repeated in Appendix B. The corresponding integrating 

matrices are referred to as "Newton" integrating matrices since they are developed 

from Newton forward difference interpolating formulas. Some additional Lagrange 

and least-squares integrating matrices not listed here are tabulated by Lakin [36). 

The Lagrange integrating matrices discussed by Lakin are somewhat related 

to the -Jacobi matrices described above since both originate from Lagrange inter- 

polations, which are valid for unequal grid point intervals. As noted by Lakin, 

however, the Lagrange integrating matrices are somewhat cumbersome to numeri- 

cally compute for grid spacings chwen on an ad hoc basis. In contrast, however, 

the computation of Jacobi matrices is a much simpler numerical task. It turns out 

that Jacobi integrating matrices can be calculated by a procedure that is in many 

respects similar to the procedure presented by Lakin for least-squares fitting based 

on orthogonalpolynomials. In fact, if the least-squares fit procedure is applied to 

the Jacobi grid points for an approximating polynomial of the maximum degree (i.e., 

the same degree used for an interpolation), then the least-squares procedure yields 

the Jacobi integrating matrix. A nice feature of the Jacobi integrating matrices is 

that optimal grid point locations are determined automatically by the underlying 

quadrature rule. 

There are some other features of Jacobi integrating matrices that differ from 

Newton and Lagrange integrating matrices. The first of these differences arises 

because of the unequal grid point spacing. In the calculation of Newton matrices 
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for instance, the interpolations over a subinterval 

polynomials. That is, a polynomial of degr 

grid points, can be shifted along the interval of 

a time. This is possible, of course, because the Newton matrices are based on 

equal grid point spacings. For the interpolations required by the Jacobi integrating 

matrices, however, the unequal subintervsl lengths mandate the use of a stationary 

polynomial. Because of the use of stationary polynomials, the Jacobi integrating 

matrices are in some respects analogous to high order, polynomial-based finite 

elements. That is, a Jacobi Uelementn corresponds to n + 1 consecutive grid points 

and has n - 1 unequally spaced internal nodes. The complete interval [a,&] can be 

constructed by placing so-called Jacobi “elements” end to end. Experimentation 

with the Jacobi matrices reveals that the highest numerical efficiency is obtained 

by using a small number of “elements” of high order. This is in accord with results 

for finite element and other numerical approximation techniques. 

A second aspect of a Jacobi integrating matrix (or any other type of integrating 

matrix with unequal interva.Is) is that interpolation may be required if one desires 

solution results at points other than the grid points. This is a fairly simple process, 

however, since interpolation shape functions are easily developed for the Jacobi 

polynomials. These shape functions are presented in Appendix A. Again, these 

shape functions are analogous to shape functions commonly used in finite element 

analysis. 

Regardless of the type of integrating matrix, some very useful information can 

be obtained by investigating the quadrature rule on which the integrating matrix 

are applied to 

re rule €or the 

ts of the weighting ter 

integral 
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simply consists of the W's and the conespon he 

primary values of interest, are contained in the last row of the integrating matrix. 

These quadrature weights, of course, can SISo be obtained by summing each of the 

terms in a columtt of the weighting matrix W. 

An examination of the underlying quadrature can often lead to a better un- 

derstanding of the nature of a particular integrating matrix. For example, for the 

Jacobi weighting matrices given in Appendix B, the grid points are arranged sym- 

metrically on the normalized interval [-I, 11 and the quadrature weights (obtained 

by summing the columns) are all positive numbers that steadily increase in value 

as one approaches the midpoint of the interval. The values of the weight terms are 

also symmetric about the midpoint of the interval. But the important revelation is 

that the quadrature rule associated with Jacobi integrating matrices turns out to 

be the same as a well known numerical integration method, Lobatto quadrature. 

In fact, the numerical calculations for the Jacobi weighting matrices in Appendix B 

were verified by comparing the quadrature weights with those tabulated for Lobatto 

integration on page 920 of Abramowitz and Stegun [40]. 

An aspect of Newton integrating matrices that became apparent during this 

investigation was a possible asymmetry of the underlying quadrature. This phenom- 

enon, which was &u noted by Lakin [36], is referred to as "biasing." Biasing only 

arises when using interpolating polynomials for w the number of interpolation 

points, n + 1, is an odd number. The reason that biasing occurs for odd n + 1 is 

that away from the end points the interpolating polynomials cannot be centered 

ed. When biasing is present, 

ton forward difference formulas differ 

m those derived from backward difference formulas. When n+ 1 is even, there is 
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no biasing and both forward difference and backward diillerence formulations yield 

identical integrating matrices. When using the Newton integrating matrices, it 

is generally convenient to employ those matrices that are not biased (i.e., based 

upon Wn with n i- 1 even). It is interesting to note, however, that there is an easy 

way to symmetrize a biased Newton integrating matrix. Essentially, one develops 

a weighting matrix from one-half the sum of forward dxerence and backward 

difference weighting matrices. This is conveniently illustrated by taking a particular 

example that considers a quadratic Newton weighting matrix written for five grid 

points. By expressing the weighting matrix as a sum of forward and backward 

difference matrices, we have 

- 0  0 0 0 0- 
10 16 -2 0 0 
-1 13 13 -1 0 

0 -1 13 13 -1 
0 0 -2 16 10 
9 28 22 28 QJ 

(3.15) 

where the subscripts f and b refer, respectively, to forward and backward differ- 

encing. Equation (3.15) expands into (see Appendix B) 

where the values below the horizontal bar in each matrix represent the quadrature 

weights. As can be seen, the final weighting matrix in Eq. (3.16) yields a symmetric 

quadrature. An interesting comparison can be made with the equivalent nonbiased 
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cubic Newton weighting matrix. It appears as 

9 19 -5 1 0 O l  I 0 0 0 0  

(3.17) 

The similarity of the interior matrix elements between Eq. (3.17) and the last expres- 

sion in Eq. (3.16) indicates that the symmetrized, nonbiased quadratic matrix will 

approach the accuracy of the cubic matrix. Obviously, error cancellation inherent 

in the summing of forward and backward diirerence formulations is responsible for 

the accuracy increase. 

Also, rough comparisons between integrating matrices can be made based 

upon the quadrature rules. For instance, the Newton integrating matrices, in 

contrast with Jacobi integrating matrices, have quadrature weights that can oscillate 

considerably as one proceeds along the interval of integration. This oscillation tends 

to increase somewhat for the higher order Newton integrating matrices. This basic 

difference between the underlying quadratures for Newton and Jacobi integrating 

matrices can manifest itself in both accuracy and convergence properties. This will 

be discussed again in later chapters when comparisons are made between Newton 

and Jacobi solutions. It should be noted, however, that Newton and Jacobi matrices 

are identical for the quadratic approximation. For higher order approximations, 

their properties and relative accuracies differ. Although both types of integrating 

matrices provide very good solution accuracies, it has been found that Jacobi 

matrices are capable of offering faster, more predictable convergence and higher 

accuracy with fewer grid points. 
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3.2 Integrating Matrices for Dis tenr 

Aided by the developments of the prev section, it is now str 

to determine appropri weighting matric d integrating matric 

with discontinuous parameters. Basically, there are two types of discontinuities that 

occur often in static structural analysis and structural vibration. The first of these 

discontinuities stems from stepwise changes in coefficient terms of the differential 

equations. Such stepwise discontinuities could easily be the result of changes in 

stiffness or mass parameters. Appropriately, these discontinuities are best described 

by step functions. Methods for handling this type of discontinuity will be considered 

in this section. The methods discussed here for treating stepwise discontinuous 

systems are similar in some respects to the methods described by Vakhitov [26]. 

A second type of discontinuity results from point loading. Point loads can arise 

from either applied external loads or inertia loads associated with point masses. 

Point loads are most easily handled by introducing impulse functions. Since impulse 

functions are to be treated by an approach diiTerent from that for step functions, the 

methods for including concentrated loads in an analysis are taken up in Appendix 

E rather than this section. 

The treatment of a problem with stepwise discontinuities is straightforward. 

The solution interval is simply divided up into analytic regions by breaking the 

integration at points of discontinuity. For each of these separate regions a dif€erent 

ing matrix can 

is that the weighting matrix W for the complete sol 
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Fig. 2. Typical integration regions for a discontinuous function 

structure, where each of the blocks corresponds to a normal weighting matrix 

written for one of the analytic regions. 

Perhaps a simple example best explains the procedure to be applied to dis- 

continuous functions. Consider integrating a function that has a single point of 

discontinuity, as shown in Fig. 2. The integration of the discontinuous function can 

clearly be broken into the two distinct integrations indicated by the regions I and 

II. For this particular example, which assumes weighting matrices with end point 

nodes, the equivalent of Eq. (3.7) can be written as 

(3.1 8) 

Here, as in &. (3.11), the resulting integrating matrix can be calculated from 

L - m + r r  - (3.19) 

In Eq. (3.18)) it should be noted that the "merged" weighting matrix has no overlap 

of rows or columns between the individual matrices for each region. 
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Note in Fig. 2 that two distinct function values have efined at the discon- 

tinuous point, each corresponding to the appropriate function value an infinitesimal 

distance away from the discontinuity. T 

case in which the weighting matrices 

identically locat 

er side of the d 

ts occur for the 

uity make use 

of grid points located at the end points of an interval. Strictly speaking, it is not 

mandatory that one have grid points at the discontinuity, unless, of course, bound- 

ary conditions or loads must be applied at such a point. For instance, an interior 

region of a multiple region integration might make use of weighting matrices based 

on Gauss-Legendre quadrature, which does not require grid points at the ends of 

an interval (see Appendix B). Regardless of whether or not grid points are located 

at discontinuities in the integrand, the continuity of the integration assures that 

solutions will be continuous. 

Another feature that can be accommodated in much the same fashion as a 

stepwise discontinuity in integration is either a change in step size or a change in 

integrating matrix type within a solution interval. Grid points are fixed, of course, 

for weighting matrices based on orthogonal polynomials, but can be variable for 

constant step size matrices like the Newton integrating matrices. It is quite easy 

to switch to different types of integrating matrices to satisfy particular solution 

requirements for portions of a solution interval. The method for handling a discon- 

tinuous integration arising from integrating matrix changes or step size changes is 

very much similar to the method emp €or discontinuous system parameters. 

When compared to the discontin in Eq. (3.18), changes in either 

step size or integrating matrix type lead to a slightly different way of adding the 

local weighting matrices into the ul weighting matrix. If weighting matrices 

with different step sizes (or even with the same step sizes) are merged to integrate a 

larger region, etween weight e merged 

matrices. This is true for weighting matrices that use end point nodes as well as 
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Fig. 3. Typical regions for piecewise integration of a continuous 
function 

those that do not. The "overlap" shows up in the global weighting matrix as an 

overlapping of some of the rows and columns of adjoining matrix blocks. Again, 

a specific example easily demonstrates the procedure. Consider the five grid point, 

two region integration shown in Fig. 3. For the sake of illustration, second degree 

Newton weighting matrices having equal step sizes will be employed in both regions 

I and II .  Furthermore, the the step size is conveniently chosen such that the 

constant step size factor h/12 has the value of unity. (See Appendix B.) With these 

specifications, the equivalent of Eq. (3.7) becomes 

0 0  0 

(3.20) 

For this specific example, it can be seen that the region I and region 11 submatrices 

overlap by one row and one column. 
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In the integrating matrix method, the process of mer Weighting matrices 

is analogous to the merging of stiffness matrices in the fi lement method. In 
fact, by considering the different situations that can arise in connection with discon- 

tinuous integrations, it is possible to write down a simple set of rules describing how 

weighting matrices should be merged. To be able to give a consistent set of rules for 

weighting matrices with and without end point nodes, one basic requirement must 

be met. This requirement simply stipulates that weighting matrices without end 

point nodes must conform to weighting matrices with end point nodes. An example 

of a conforming Gauss-Legendre weighting matrix is given in Appendix B. It should 

be noted too that the merging process is carried out by starting at one boundary 

of the solution interval and proceeding with consecutive piecewise regions in the 

direction of integration. 

The rules for merging weighting matrices at points of continuous or discon- 

tinuous system coefficients can be considered separately. First, for discontinuous 

parameter systems we have the following requirements for merging at a point of 

discontinuity: 

1. 

2. 

If both adjacent matrices have end point nodes, there will be 
no row or column overlap (e.g., Eq. (3.18) ). 

If one of the adjacent matrices has end point nodes and the 
other does not, there will be one row and one column of 
overlap. 

If neither of the adjacent matrices have end point nodes, there 
will be one row of overlap and two columns of overlap. 

3. 

For continuous parameter systems, the following rules for merging appIy at any 

point within the solution intervak 

1. IT either or both of the adjacent matrices have end point nodes, 
e one row and one column of 

2. If neither of the adjacent matrices have end points, there will 
be two rows and two columns of overlap. 
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Any of the above merging rules can be easily checked by taking a sample 

m and examining the subinterval integrations, as demonstrated, for ex 

in Eq. (3.20). Since the merged 

integrations, the logical conclusion of the merging process is in the determination 

of the corresponding integrating matrix from Eq. (3.11). From the standpoint of 

numerical calculation, the merging rules can be applied during the summing process 

that forms the integrating matrix from the weighting matrix. 

ghting matrices only specify the su 

3.3 Differentiating Matrices 

Similar to the idea of an integrating matrix, there is also a differentiating 

matrix: The differentiating matrix expresses the derivative of a function in terms 

of the function values at a discrete set of points. Usually, a differentiating matrix 

is determined by merentiating an interpolating polynomial, just as the integrating 

matrix is determined by integrating that same polynomial. It is also feasible to use 

simple differencing to calculate a differentiating matrix. 

Differentiating matrices, in fact, are quite common in finite element applica- 

tions. For instance, the strain-displacement relationships in a finite element analysis 

are usually written in terms of a differentiating matrix determined by differentiating 

the displacement shape functions. The papers by Levashov [33-351 show how a 

combination of both differentiating matrix and integrating matrix concepts can be 

used to solve structural problems by the displacement method. For the integrating 

matrix approach as presented here, one rarely has to resort to using differentiating 

matrices. Nonetheless, the differentiating matrix proves to be a useful tool in certain 

circumstances and is worthy of mention. 

With the state vector formulation of the aeroelastic equations given in Chapter 

2, it is normally possible to write the structural portion of the equations without 
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need for a differentiating matrix. To express certain descriptions of the aerodynamic 

loads, however, higher derivatives of some of the structural state variables 

required. In such a situation, the difllerentiating matrix provides a conven 

of writing these higher derivatives in terms of existing state variables. A similar 

situation can exist when writing the “preload” terms for a structure with initial 

curvature. In this latter case though, it appears that it’s usually possible to rewrite 

the equations in such a way that the use of a differentiating matrix is avoided. 

A variety of differentiating matrices can be calculated depending on the type of 

interpolating polynomial assumed. Methods for calculating dflerentiating matrices 

are quite straight forward since one simply determines derivative expressions for 

the approximating polynomials. Detailed calculations will not be presented here for 

differentiating matrices; however, some precalculated formulas do exist for deriva- 

tives of certain types of interpolations. For example, expressions for the derivatives 

of Newton forward difference interpolation formulas, which form the basis for the 

Newton integrating matrices, can be found on page 883 of Abramowitz and Stegun 

f401. Also tabulated there are sirnilar expressions for the derivatives of Lagrange’s 

interpolation formula, which is useful for appraimating functions with nonuniform 

grid spacings. And finally, differentiating matrices corresponding to Jacobi integrat- 

ing matrices can be calculated by differentiating the shape functions presented in 

Appendix A.. The finite series expansion for the Jacobi polynomials presented in 

that appendix should prove useful in obtainiing the proper derivative expressions. 
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Chapter 4 

Integrating Matrix Solution of 
State Vector Equations 

INTEGRATING MATRICES PROVIDE a convenient and efficient method for 

solving twepoint boundary value problems. The prime concern is the solution of 

the aeroelastic and structural dynamic equations presented in Chapter 2. The major 

focus of this chapter is on the formulation of discrete solutions for these equations 

when they are represented in state vector form. Other important issues that are 

discussed include methods for manipulating and reducing the discrete state vector 

equations to a suitable form for numerical solution. 

A direct approach that does not require the calculation of influence matrices will 

be presented for formulating linear systems of equations and eigenvalue problems. 

It also turns out that the integrating matrix solutions to be discussed are closely 

related to alternate solutions in terms of transition matrices. In fact, the integrating I 

matrix provides one of the easiest means for numerically calculating transition 

matrices. Furthermore, with the aid of a transition matrix, one can in turn calculate 

symmetric stsness inftuence matrices for the types of problems considered in this 

chapter. Although the transition matrix approach will not be discussed here, it is 

efly in Appendix G. Many of the ideas contained in this chapter can 

be used in connection with transition matrix calculations. 
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As will be evident to those familiar with approximate solution techniques, the 

integrating matrix approach belongs to a class of collocation solution methods. 

Since collocation solutions belong to the more general family of methods know as 

weighted residual methods, it is possible, in fact, to formalize the integrating matrix 

approach in much the same way that finite element methods are formalized. For the 

sake of simplicity, however, the following presentations will employ a more intuitive 

approach. 

Collocation solutions are conveniently classified by Collatz [41] (also, Meirovitch 

[42]) according to the nature of the approximating functions. Within this classifi- 

cation scheme, the integrating matrix approach presented here falls into the category 

of a mixed method. That is, the approximating functions initially satisfy neither the 

differential equations nor the boundary conditions of the problem. (Other categories 

stipulate that the functions must initially satisfy either the boundary conditions or 

the daerential equations.) Solutions with the mixed method are obtained by insist- 

ing that at selected collocation grid points the boundary conditions, or differential 

equations, as appropriate, are satisfied exactly. From the discussions of chapter 3, 

it should be clear that the arrangement of collocation grid points, as well as the 

approximating functions, are specified by the choice of integrating matrix. 

A general advantage that collocation methods have over some other methods 

lies in the ease with which coefficient matrices can be generated for the approximate 

equations. As will be shown, the integrating matrix approach provides a very simple 

way of obtaining the matrix equations that describe a particular set of differential 

equations. Ln addition, if these differential equations are in state vector form, it is 

often possible, at least for linear problems, to take advantage of the structure of 

the state vector equations to further simplify the corresponding matrix equations. 

There is, however, a disadvantage to c cation type approaches. Namely, 

the matrices involved are always nonsymmetric, thereby requiring less efficient 
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solution routines. But in many 

the simplicity of the approac 

easily accommod 

considerable reduction in proble 

4.1 Discretized State Vector Equations 

To obtain a discretized form of the state vector equations, it is convenient to 

consider a particular example problem. A suitable choice is Eq. (2.20), which can 

be used to describe aeroelastic response for a one dimensional structure. Although 

this equation is intended primarily for static aeroelastic response, with appropriate 

generalization it encompasses other types of equations, including dynamic equations 

like Eq. (2.21) and Eq. (2.22). To make the results generally applicable, it is assumed 

that Eq. (2.20) can be expressed in a nondimensional form so that it appears as 

where X represents a nondimensional parameter. For homogeneous problems, which 

are obtained by dropping the nonhomogeneous term +, the parameter X is to be 

taken as an eigenvalue. In the sample problems to be presented later, more precise 

definitions will be given €or the terms appearing in &. (4.1), but for now it is 

e them simply as generic terms. In what follows, the state vector y , 

in Eq. (4.1) will be referred to as a local state vector. 

Since Eq. (4.1) must be valid for any value of the spatial coordinate, it 

written at a discrete set of N + 1 points dong the desired solution interval. 

discrete form it can be expressed as 

can be 

In this 
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The discrete version 

to specify a particular ordering. It will be assumed that the global state vector 

is ordered such that its structure is the isely, it is 

partitioned into generalized force and generalized displacement subsets as was done 

for the local vector y in Eq. (2.4), and furthermore, the discrete set of values for a 

particular state variable are grouped together. This will be clearly demonstrated in 

the sample problems of Chapter 5. 

With the aforementioned ordering in mind, a global version of the integrating 

matrix, i, can now be applied as a matrix operator to both sides of Eq. (4.2). The 

result is 

where k is a constant vector of integration to be determined from boundary con- 

ditions. Note that the effect of applying the integrating matrix to the isolated 

derivative term on the left-hand side of Eq. (4.2) was simply to integrate that term 

and thus remove the derivative. Integrating matrices on the right-hand side of Eq. 

(4.3) perform their integration function through a matrix multiplication. 

The global int ting matrix in Eq. (4.3) is a block diagonal matrix that 

appears as 

with each block being a standard (N + 1) x (N 
in the previous chapter. The approp 

ating matrix as derived 

number of matrix blocks on the diagonal 
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is determined by the number of state variables, NS, in the local 

essence, the int allows 

solving a simple integrable equation by analytical methods. But 

integration properties of the integrating 

otherwise difficult integrations in a very simple manner. 

At this point, Eq. (4.3) provides a matrix equation from which one can obtain 

a solution of the state vector dzerential equations. The only remaining step is 

to determine i from specified boundary conditions. And once i is known, there 

remains only a linear systems solution if considering the nonhomogeneous problem, 

or a matrix eigenvalue solution if considering the related homogeneous problem. 

% *  

For two-point boundary value problems, it is useful to introduce the boundary 

condition matrices BO and &. These boundary condition matrices, which relate 

to homogeneous boundary conditions, will aid in solving for c. & and B, can be 

written as 

&-i@ (4.5) 

and 

where i is a column vector containing all unit terms. The vectors 

expressed as 

and b, can be 

br=  { l ,O ,  ..., 0} (4.7) 

b: = (0, ..., 0,l). 
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The dimensions of Bo and 8, are (N+ 1) X (N+ l), the same as a normal integrating 

matrix. Also, since the first row of the integrating matrix s only zeroes, one 

has that BoL = 0. 

Corresponding to the global block diagonal integrating matrix i, there is a 

similar block diagonal boundary condition matrix, B. For a two-point boundary 

value problem, each matrix block on the diagonal of B is specified by applying either 

or B, (or equivalently, br or b;f) to the corresponding state variable and solving 

for its constant vector of integration. This process will be clearly demonstrated in 

the examples of Chapter 5. Since br and b: contain mostly zero elements, along 

with a strategically located unit term, their operational effect on a discrete state 

vector is to select the “degree of freedom” at which a boundary condition is to be 

applied. 

In addition to the homogeneous boundary condition matrix 6, one can define 

Bnh to account for nonhomogeneous boundary conditions that can be written in 

terms of the state variables. The specific form of 6,h has to be determined for each 

particular problem, but one should note that for many common problems it is simply 

zero. When 6 , h  does need to be determined, it is defined in such a way that when 

it premultiplies the global state vector, it produces the required nonhomogeneous 

boundary terms. Similar to the situation for 6, 8nh will consist mainly of zeroes, 

but will have a few strategically located nonzero terms. The nonzero terms in Bnh, 

however, are not usually unit terms as was required for 6. 

With the foregoing definition of boundary condition matrices, a general expres- 

sion can be obtained for the solution of k. To obtain this expression, Eq. (4.3) is 

first multiplied through by B. Since B has been defined for homogeneous boundary 

conditions, we have that Bji = 0. Furthermore, the form of is specified to be such 

that 6i = 6. With these two identities, and with the aid of the nonhomogeneous 

boundary term B n ~ ,  one obtains from Eq. (4.3) the general result 
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where it can be noted that consists of both homogeneous and nonhomogeneous 

components. For nonhomogeneous boundary terms that express displacement de- 

pendent loads, it is often possible to rewrite these terms is such a way that they can 

be included in rather than Bnh. The advantage in doing this will be discussed in 

the next section. 

Having now determined a general expression for i ,  the next step is to obtain 

a suitable matrix equation that can be solved by standard methods. This is easily 

achieved by substituting the expression for k from Eq. (4.9) into Eq. (4.3). Grouping 

similar terms and then rearranging leads to 

[H - XFQ5 = I (4.10) 

where 

H = I + Bnh + ~i 
F [B - I]L 
I =F&, 

(4.11) 

(4-1 2) 

(4.13) 

with 1 being an identity matrix with appropriate dimensions. It is obvious that 

Eq. (4.10) represents a system of linear equations when X is specified and when the 

nonhomogeneous external load term, 1, is nonzero. If 1 is zero, then EQ. (4.10) 

provides a matrix eigenvalue problem. Furthermore, if one chooses to give different 

interpretations to XA, then Eq. (4.10) encompasses a broad range of aeroelastic, 

vibration, and structural problems. For instance, the free vibration and unsteady 

aeroelastic problems described by Eqs. (2.21-2.22) are manipulated into similar 

forms after application of the integrating matrix. More precise definitions for several 
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types of problems will be given iP the following sections and in the example solutions 

of Chapters 5,  6, and 7. 

It is possible to stop at this point and numerically solve Eq. (4.10) with standard 

methods. To do so, however, requires the solution of matrix equations with twice the 

number of necessary variables. As mentioned previously, the global state vector, j ,  

is partitioned into both force and displacement variables, jF and OD, similar to Eq. 
(2.4). The next section will show that by applying matrix partitioning techniques 

one can conveniently reduce the solution of Eq. (4.10) to an equivalent problem 

written solely in terms of the displacement variables jiD. 

4.2 State Vector Equation Reduction 

By partitioning the matrices in Eq. (4.10) according to the force and displace- 

ment states of the global state vector, it is possible to achieve an analytical reduction 

of the matrix equations such that only displacement variables are involved in the 

final solution. As will be shown, the reduction task is greatly simplified due to the 

structure of the state vector equations developed in Section 2.1. 

Writing out the partitioned form of the matrices appearing in Eq. (4.10) reveals 

that 

i=[ 0 Am ] 
0 0  

(4.14) 

(4.35) 

(4.16) 



and 

(4.17) 

First of all, it should be noted that the H matrix contains structural related 

terms, including elastic restraint boundary terms that arise from Bnb. The HFD 

submatrix consists of these elastic restraint terms as well as “geometric stiffness” 

terms for problems involving initial structural curvature and deformation dependent 

“preloads.” As mentioned in connection with nonhomogeneous boundary terms in 

the previous section, it is often possible to shift terms that appear in HFD so that 

instead they can be included in AFD. This can be easily done, for example, for the 

centrifugal stiffening term that appears in rotating beam problems. The motivation 

for rearranging in this way is to zero out the HFD submatrix. If HFD = 0, the 

reduction process is considerably simplified, as will be indicated in what follows. 

For problems without nonhomogeneous boundary terms and without geometric 

nonhearities, HFD is automatically zero. 

Other matrices and vectors appearing in Eqs. (4.15-4.17), such as A and I, have 

the indicated forms because of the natural structure of the state vector equations 

derived in Section 2.1. For instance, since contains only displacement dependent 

load terms, the only nonzero partition is given by AFD, which is the submatrix that 

expresses loads in terms of the displacement variables. F, on the other hand, is a 

block diagonal matrix simpIy because the matrices from which it is calculated are 

also block diagonal. 

With the partitioned form of the matrices given by EQs. (4.14-4.17), it is 

straight forward to write out the corresponding partitioned equations from Eq. (4.10) 

and use them to eliminate the the generalized force variables, jiF. This elimination 

process yields the expressions to be used in solving for the force variables once 

the displacement variables j iD are obtained. The method to be used in reducing 
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the partitioned equations involves multiplying them through by the inverse of the 

H matrix, where this inverse is obtained m the partitioned form of H. Matrix 

inversion by partitioning is discussed, ample, in Appendix A of the text by 

Przemieniecki 1431. If the inverse of H is denoted by 

(4.18) 

then the inverted terms that will be needed in the following reductions are 

and 

The first set of reduced equations to be obtained are those for aeroelastic lift dis- 

tribution and structural deflection problems. Beginning with the nonhomogeneous 

linear equations given in Q. (4.10), their partitioned form appears as 

Multiplying Eq. (4.21) through by H-' then yields 

(4.21) 

(4.22) 

e the generalized force 

(4.23) 



and the reduced linear system 

where 

(4.24) 

(4.25) 

If HFD I= 0, then Eq. (4.24) simplifies to 

This s&plified result provides the expression to be used in several examples that 

will be presented in later chapters. Note that X must be specified before solutions 

can be obtained from Eqs. (4.24) and (4.26). In the absence of aerodynamic or 

inertial loading, X will be equal to zero and &. (4.26) directly provides structural 

deflect ion solutions. 

The next important result concerns the reduced eigenvalue equations for both 

aeroelastic divergence and free vibration problems. This result is easily reached by 

first setting the right-hand side of Eq. (4.21) to zero to obtain the homogeneous 

version of the partitioned equations. Then, by tollowing an approach similar to 

that given above for the nonhomogeneous case, one obtains the reduced eigenvalue 

equations 

The corresponding generalized forces, after solving for g D ,  are given by 

(4.28) 



Similar to Q. (4.26), a useful form of the reduced eigenvalue probl 

is obtained by considering HFD = 0, which gives the result 

(4.29) 

This form of the eigenvalue problem will be employed in later examples. 

To complete the presentation of the reduced equations, it is useful for reference 

purposes to give the flutter eigenvalue problem that will be discussed in Chapter 7. 

The flutter equations, which will be written for the Laplace domain, are obtained 

in a manner similar to Eq. (4.29), except that they derive initiauy from Eq. (2.21) 
rather than Eq. (2.20). By taking HFD - 0, these equations can be written in the 

€arm 

[I f T[MFD8*' f Cm8* -., e?n(s*,x)]]3~ - 0 (4.30) 

where MFD is a mass matrix, tn, is a damping matrix, and QFD is an unsteady 

aerodynamic matrix. The variables u* and ;ria are, respectiveIy, a nondimensional 

Laplace variable and a nondimensional complex eigenvector. The terms appearing 

in Eq- (4.30) will be defined in more detail in Chapter 7. 

An important observation about the foregoing reductions is that although the 

required matrix inversions can be carried out numerically, they can often easily 

be avoided or simplified. This is possible because of the particuIarly simple block 

matrix structure of H. For example, if Hro - 0, then the inversion of H is given by 

(4.31) 

Furthermore, as a result of the structure of the hybrid state vector equations, 

inversions for HDD and Hm are trividy obtained. This is due in part to the 
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sparseness of these matrices. Further clarification of the inversion process will be 

offered in the examples of Chapter 5. As a final result, however, one will find it 

possible to write out the simple matrix expressions for the calculation of T and its 

product with other matrices. 

Additional simplification of the reduced equations is possible for situations 

where constraint equations exist. The equations of constraint that will be applied 

in later chapters express simple relationships between solution variables. Such 

relationships between variables can be used to eliminate certain degrees of freedom 

by writing them in terms of other degrees of freedom. The methods for applying 

such constraints to the discrete state vector equations are presented in Appendix F. 
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Chapter 5 

Solutions for Isotropic Beams and Rods 

INTEGRATING MATRIX SOLUTSONS are most easily demonstrated with the 

aid of sample problems. This chapter, and the next two, present examples of 

how integrating matrix solutions can be used to solve a variety of problems in 

structural dynamics and aeroelasticity. These solutions are presented both to 

validate the methods discussed in Chapter 4, and to evaluate the accuracy and 

convergence trends of the integrating matrix solutions. Comparisons are made 

between the integrating matrix solutions and alternate analytical or numerical 

calculations. Among the items considered in the following examples are various 

types of boundary conditions and loading conditions, all of which commonly arise 

in performing practical vibration studies and aeroelastic analyses. 

5.1 Axial Vibration of Cantilevered Rods 

n of a rod provides a simple example with which to study the 

integrating matrix solution pr id rod vibration is described by a 

second order Sturm-Liouville di ial equation, analytical solutions are available 

for comparison with numerical solutions. The integrating matrix solution properties 

nted ry through to the mu 

complicated p divergence of 
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isotropic wings is also described by a similar Sturm-Liouville differential equation. 

Therefore, the fundamental e following eigenvalue solutions can 

alternately be interpreted in terms of divergence 

A nondimensional form of the second-order St 

axial rod vibration can 

”(1”). dz T a z  Xmn= 0 

where 

For this simple differential equation, the dimensionless state vector form can be 

written down directly, yielding 

where 

oundary 
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5.1.1 Rods with Continuous Mass and Stiffness 

The first solution to be presented will consider axial vibration for a cantilevered 

rod that can have variable mass and stiffness parameters. Because of its simplicity, 

this problem serves as a good demonstration of the integrating matrix solution 

procedures. The integrating matrix will be applied first to the hybrid state vector 

equations given in Eq. (5.3). It is also instructive to demonstrate how the integrating 

matrix can be utilized to solve the daerential equations given in the form of Eq. 

(5.1). Both types of solutions will be presented in detail to serve as models for other 

problems discussed in this chapter. 

Beginning with the discretized form of the state vector equations in Eq. (5.3), 

the integrating matrix is applied as an operator to perform the necessary integra- 

tions. The next step is the application of boundary conditions to determine the 

boundary condition matrices B and Bnh. From the boundary condition matrices 

follow the definitions for the other matrices appearing in Eqs. (4.10-4.13), which 

have the partitioned forms displayed in Eqs. (4.14-4.17). For example, in a homoge- 

neous vibration problem, for which i, - 0,  the F matrix is defined in terms of the 

given boundary condition matrices, followed by the determination of the H matrix. 

For the axial vibration problem, an application of the global integrating matrix 

to the discretized version of Eq. (5.3) yields 

To make it convenient to solve for boundary conditions, Eq. (5.6) is easily expanded 

into the two sets of equations 
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Applying the boundary condition ~ ( 0 )  - 0 to Eq. (5.8) gives 

where use has been made of brL - 0 and brk, - k. (Note, for example, that 

k, =r; ik,, where i is as defined in Eqs. (4.5) and (4.6)) In a similar manner, the 

boundary condition F,( 1) = 0 can be applied to Q. (5.7), yielding the scalar solution 

which can be converted to the vector form 

(5.11) 

From the results in Eqs. (5.9) and (5.11), the boundary condition matrix 6 appearing 

in Eq. (4.9) can be written as 

(5.12) 

For this problem, one also has that Bnh - 0. 

Having obtained expressions for the constant vector of integration, the parti- 

tioned matrices in Eqs. (4.14-4.16) are given? via Eqs. (4.10-4.12)9 as 

"==[ -L't I 01 I 

A = [  0 * f A  1 
0 0  

(5.13) 

(5.14) 

(5.15) 
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where Lf can be considered as a special type of integrating matrix. (LT is actually 

the equivalent of what Vakhitov [26] refers to as a "type two" integrating matrix. 

To see the significance of this modified integrating matrix, one can write out the 

type of integration that it performs; namely, 

(5.16) 

Other such special integrating matrices will be defined for convenience sake in 

later problems. Each one will be assigned a different subscript that will serve to 

distinguish it.) 

The matrices in Eqs. (5.13-5.15) can be used directly in Eq. (4.25) and Eq. 

(4.29) to obtain the reduced eigenvalue problem for free vibration. From Eq. (4.25), 

we obtain the result 

T-L'rLf, (5.17) 

and from Eq. (4.29) the eigenvalue problem is 

[L' .cy. m - (1/X)I]{n} - 0. (5.18) 

This result provides the eigenvalue problem for a cantilevered axial rod with variable 

stiffness and mass parameters. As can be seen, the eigenvalue problem is formed 

by specifying the integrating matrix and the corresponding discrete values for the 

diagonal matrices ' r and ' ~ t ,  

For simple problems, such as the one considered here, an alternate approach 

that often proves very convenient iS to apply the integrating matrix to the form 

of the equations given in--Eq. (SA), rather than utilizing the state vector form. A 

discrete form of &. (5.1) can be written as 

(5.19) 
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Applying the integrating matrix to Q. (5.19) yields 

Now multiplying this result through by the diagonal matrix ' r  to isolate another 

derivative term gives 

d 
-{U} hc +A*t l*m{~} - ' r k p .  (5.21) 

Another application of the integrating matrix then produces the result 

If Eq. (5.22) is multiplied through by bg, then use of the boundary condition a(0) sx: 0 

gives, as before, k, = 0. Similarly, multiplying l3q. (5.20) by bz and using F,(1) - 0 

leads to the result in &. (5.11). Substituting these results €or the constant vectors 

into Eq. (5.22) and rearranging gives the eigenvalue problem presented in Eq. (5.18). 

F'rom the eigenvalue problem given by Eq. (5.18), results can be obtained for 

either uniform or variable property rods. For the case of a uniform rod, the matrices 

' r and 'm are simply identity matrices. The numerical calculation of the eigenvalues 

and eigenvecton can make use of standard eigenvalue routines. For the examples 

presented, the computations were carried out on an IBM 3033. The calculations 

that form the matrix for the eigenvalue problem were performed in single precision 

arithmetic, and the eigenvalues and eigenvectors of the resulting real, nonsymmetric 

matrix were calculated with a reliable double precision routine available in the 

EISPACK eigenvalue package (see smith [a]). Calculations were performed for both 

Jacobi and Newton integrating matrices, with the number of discretization intervals 

N varying from two to five. For each level of discretization, the maximum order 

integrating matrix was used €or the given number of eollocation points (N + 1). 
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The numerical solutions for axial vibration of both uniform and linearly tapered 

rods were compared with analytical solutions. For the uniform rod, analytical solu- 

tions for the constant coefficient Sturm-Liouville problem can be found in Section 

3.5 of Bisplinghoff, Ashley, and Halfman (451. For linearly tapered rods, useful 

analytical solutions for the eigenvalues of the homogeneous dserential equation are 

are given in closed form by Hildebrand and Reissner (461. (These solutions are also 

repeated in Ref. (451, pp. 4 3 2 4 4 . )  

In the case of the uniform rod, results for the axial frequencies obtained with 

both Newton and Jacobi integrating matrices are presented in Table 1 at the end 

of this chapter. Also presented in Table 1 are the percentage errors between the 

approximate integrating matrix results and the exact analytical solutions. Fig. 4 

gives a display of these percentage errors for the first three vibrational modes. As 

can be seen by comparing the frequency errors, both Newton and Jacobi solutions 

provide highly accurate results despite the relatively crude discretization. It is also 

clear that for those frequencies that are nearing convergence, the Jacobi solutions 

are more accurate than those provided by the Newton solutions. For the uniform 

rod, the frequencies given by the Jacobi integrating matrices always converge from 

above to the exact frequencies, unlike the oscillatory convergence of the Newton 

solutions. Since all of the available frequencies are displayed for each discretization 

level, it is useful to note how the higher frequencies behave as the discretization level 

increases. For the Jacobi solutions, it is apparent that each newly introduced modal 

frequency is quite high compared to the exact result, but rapidly converges to the 

correct solution as new discretization intervals are introduced. In comparison, each 

newly introduced Newton solution frequency is not as high, but the convergence to 

the correct result tends to be somewhat oscillatory. These convergence trends for 

uniform parameter systems are also evident in additional solutions to be presented 

in the following sections. Aside from the finer details of convergence, however, both 
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Fig. 4. Error in computed frequencies, compared to exact solu- 
tions, for the first three axial modes of a uniform can- 
tilevered rod. The error for both Jacobi and Newton in- 
tegrating matrix solutions is plot vs. the number of 
collocation intervals N. 
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Newton and Jacobi solutions have the capability to provide accurate results for the 

lower frequencies without requiring a highly refined mesh of grid points. 

For the uniform axial rod vibration just discussed, Table 2 gives the first three 

axial mode shapes. Results are shown for both Newton and Jacobi integrating 

matrix solutions based on five collocation intervals. Since the Newton solutions 

make use of evenly spaced collocation points, the Newton based mode shapes in 

Table 2 are simply presented for these collocation points without interpolation 

being required. On the other hand, the Jacobi solutions have been interpolated 

to these evenly spaced points with the same order Jacobi polynomial used in the 

solution. The results of performing such an interpolation are less than satisfactory 

since it appears that the Jacobi mode shapes in Table 2 are less accurate than 

the Newton results. But in fact, it is easily shown that the Jacobi mode shapes 

are quite accurate if evaluated at the Jacobi coDocation points. This behavior 

emphasizes an important aspect of interpolation processes in general. Due to the 

fact that interpolation error is itself an oscillatory function, the highest accuracy for 

the interpolated displacement solutions can be expected to occur at the collocation 

points, and the largest error will occur between the collocation points. The same 

conclusion is reached if the Newton solutions are interpolated to the unevenly spaced 

Jacobi points. This all seem to suggest, not unexpectedly, that if mode shape 

results must be interpolated, it is probably better to use a localized least squares 

procedure based on a slightly lower order polynomial approximation. 

Vibration frequencies for a linearly tapered rod can be easily determined from 

Eq. (5.18) after introducing the following variables to describe the taper. First, the 

taper ratio of the rod is defined to be (1 - Bt), where @t is the taper parameter. 

Each dimension in the cross section of the rod varies linearly as (1 - Btz). For this 

description of the taper, it follows that the mass and stiffness parameters rn and 

EA appearing in &. (5.2) can be written as 
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Error in computed frequencies, compared to exact solu- 
tions, for the first three axial modes of a linearly tapered 
cantilevered rod with a taper ratio of one half (@t - 0.5). 
The error for both Jacobi and Newton integrating matrix 
solutions is plotted vs. t 
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(5.23) 

Using these definitions for the maSS and stiffness, the frequencies of a linearly 

tapered rod with ,9: = 0.5 are given in Table 3. The percentage errors between 

the exact solutions and the integrating matrix solutions are also displayed in Fig. 5 

for the first three vibrational modes. As evident from the eigenvalue error results, 

neither the Jacobi nor the Newton solutions converge quite as rapidly as in the 

uniform rod case, which is to be expected. For this linearly tapered rod, the dacobi 

results do not necessarily converge to the exact frequencies from above as they do for 

uniform parameter problems. Nonetheless, the convergence of the Jacobi solutions 

is quite predictable in that all modes, except the first, appear at a high frequency 

and only very slightly overshoot on the negative side enroute to converging. The 

Jacobi solutions still provide faster convergence to the lower modes. In contrast, the 

Newton solutions retain their oscillatory convergence character, with the frequency 

error changing sign for each added collocation interval. Aside from this oscillatory 

behavior, the magnitude of the Newton solution errors can be considered quite 

small. It is well known that one cannot always guarantee convergence from above 

for eigenvalues obtained €rom a collocation procedure. The fact that there are sign 

changes in the error of both Jacobi and Newton frequencies for this nonuniform 

parameter problem is indicative of the collocation nature of the integrating matrix 

solutions. 

5.1.2 Rods with Discontinuous Mass and Stifhess 

Because of the common Occurrence of structural elements with parameter 

discontinuities, it is useful to exaxnine the hybrid state vector technique as applied to 

axial vibration of rods having stepwise jumps in mass and stiffness. The eigenvalue 
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problem for a discontinuous rod is still given by Eq. (5.18), which was originally 

derived for continuous parameter rods. The only dflerence arises in the proper 

specification of the integrating matrix and the diagonal coefficient matrices ' t and 

'm. The methods for specifying the integrating matrix and the corresponding 

function values for a discontinuous integrand were discussed in Section 3.2. 

To allow comparison with alternate solutions, the problem chosen for discon- 

tinuous axial rod vibration is the same as a problem discussed by Hodges [47], in 

which solutions were obtained by a Ritz method. The cantilevered rod, which is 

normalized to unit length and clamped at z = 0, is divided into three segments. 

The first segment extends from z - 0 to z = 0.25, the second segment from 0.25 

to 0.75, and the third segment from 0.75 to 1.0. Mass and stiffness parameters in 

the first and third segments are assigned the same values, and within each segment 

the parameters are assumed constant. The ratios between the parameters of the 

different segments are given by 

where 

2 
S= rCr3 - 

1+a'  

( 5.24) 

(5.25) 

Thus, when 7 - 1 and 3 - 1 there is no discontinuity in the parameters. 

Integrating matrix solutions are obtained for the discontinuous case by cal- 

culating an integrating matrix for the piecewise integration of the three segments. 

Maximum order weighting matrices are assumed in this calculation. An equal num- 

ber of collocation intervals are used for each segment; thus, it is appropriate to 

describe the solution in terms of the number of intervals per segment. 

B-70 



For 'I! = 10 and B - 100 the results are presented in Table 4 for the axial 

frequencies obtained with both Jacobi and Newton integrating matrices. Fig. 6 

displays for the first three vibrational modes the percentage error between the 

exact solutions (Ref. 1471) and the integrating matrix solutions. Similar to the 

earlier discovery for uniform axial rod vibration, the Jacobi solutions for a piecewise 

uniform rod offer the advantage of a rapid, monotonic convergence to the exact 

result from above. From a practical viewpoint, either the Jacobi or the Newton 

integrating matrix yields highly accurate results without requiring an extremely 

fine mesh of grid points. 

An interesting point to notice in Fig. 6 is that the eigenvalue error for the 

fundamental mode bottoms out and then begins to rise slightly. The reason for this 

occurrence is that the numerical precision limit has been reached for the calculation 

of this eigenvalue. As a consequence, the last digits of the result change rather than 

remaining exactly at the converged value. This same phenomenon was encountered 

by Hodges 1481 when obtaining similar high accuracy solutions with a variable order 

Ritz finite element method. The apparent cure for this is to increase the precision 

level of the computations. 

Because integrating matrices with end points were used to solve this problem, 

one should note that two identically located collocation points are present at each 

discontinuity. Since the solution values will be identical for each of these points, 

a constraint is available that can be used to eliminate the solution degrees of] 

freedom at one of the points. The rectangular transformation matrix resulting 

from this constraint can be applied as discussed in Appendix F. It turns out that 

this transformation matrix, which consists only of ones and zeroes, produces a 

diagonal matrix when premultiplied by its transpose. Therefore, the pseudoinverse 

mentioned in Appendix F can be obtained quite simply. It should be pointed out, 

however, that for small sized problems it is not necessary, and generally not worth 
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the trouble, to apply this constraint. The exception would be a large sized problem. 

In that case one might expect a significant reduction in the number of degrees of 

freedom present in the solution. 

A final note concerning axial vibration of a discontinuous rod is that solutions 

were also tried in which the discontinuities were ignored. That is, an integrat- 

ing matrix was used which allowed the integrations (i-e., the interpolations) to 

proceed across the discontinuity boundaries. As expected, the eigenvalue solutions 

approached the exact results when enough collocation points were taken. Although 

a reasonably accurate solution for the fundamental mode could be obtained without 

too much effort, matching the accuracies of Table 4 for the higher modes required a 

somewhat larger number of collocation points. Furthermore, the convergence with 

this approach was highly oscillatory for some modes and seemed unpredictable for 

anything but the fundamental mode. 

5.1.3 Rods with Elastic Restraint 

A type of boundary condition that occurs quite often is that of elastic restraint. 

Methods for handling this type of boundary condition are easily demonstrated for 

a uniform axial rod. It will be assumed that the axial modes of vibration are to be 

found for a rod that is cantilevered at one end and has an axial spring restraint at the 

opposite end. Fig. 7 illustrates a rod with these boundary conditions. Since the axial 

restraining spring applies a force to the rod that is proportional to the displacement 

at the end of the rod, the boundary condition can be included as a displacement 

dependent loading in the AFD submatrix of Fq. (4.15). In the present example, 

however, the restraint will be introduced instead through the nonhomogeneous 

boundary condition matrix Bnh. 

The nondimensional equations describing the rod are given by Eqs. (5.3-5.4) 
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EA 

Fig. 7. A cantilevered axial rod with a spring restraint boundary 
condition 

and Eqs. (5.6-5.8). Boundary conditions for the rod are 

rZ(0) = 0 &( 1) = -E&( 1) , 

where 

(5.26) 

(5.27) 

As the nondimensional restraining spring stiffness E8 varies from zero to infinity, 

the boundary conditions for the rod vary from cantilevered to clamped-clamped. 

Solutions for this problem are obtained by the same approach as presented in 

Section 5.1.1. In fact, the only changes to be made are to the boundary condition 

solution in Eqs. (5.10-5.11) and to the H matrix in Eq. (5.13). The boundary 

condition solution for the spring restrained end is given by 

which yields the vector form 

(5.28) 

(5.29) 



Eq. (5.12), and the nonhomo 

With the definition for f i  in Eq. (4.U), the replacement for l3q. (5.13) is found to 
. .. be 

(5.319 

If one now makes use of Eq. (4.27), dong with Qs. (5.14-5.15), the eigenvalue 

problem can be written as 

[I*L' +L;'rrs - (l/A)I]@} - 0 (5.32) 

where 

I* - [I + &,L' tBn]-'. (5.33) 

The eigenvalue problem in Q. (5.32) applies to vibration of a nonuniform rod and 

can be solved for any value of restraining spring stifllness. 

Although it might appear to be a formidable task, it is actually quite easy to 

analyticaUy invert the expression in Eq. (5.331, and thus obtain a simpler form for 

the eigenvalue problem. The reason that EQ. (5.33) can be easily simplified is that 
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where the matrix has been partitioned such that e2 is a scalar and 21 is a vector. 

The inverse of Eq. (5.34) is 

This result can be conveniently written in the form 

where 

1 1 

(5.35) 

(5.36) 

(5.37) 

For the’case of a uniform rod (‘ r = ‘m = I), the eigenvalue problem given by 

Eq. (5.32), in conjunction with Eq. (5.36), can be written as 

[I*LLf - (l/X)I](I.l} = 0 

where 

(5.38) 

(5.39) 

Note that in obtaining Eq. (5.39) from Eq. (5.37) a special identity was used; namely, 

bKLi = 1. (5.40) 

This identity applies when the integrating matrix has been written for a normalized 

interval of unit length. It is well worth remembering this identity since it appears 

often in solving for various types of boundary conditions. 

Exact eigenvalues for the uniform cantilevered rod with spring restraint are 

easily found by analytically solving the differential equations. It c b  be shown that 
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the eigenvalues are given by the roots of the transcendental equation 

(5.41) 

and the corresponding axial mode shapes are obtained from 

For the exact solutions, as E6+0,  f i+n1r /2 )  with n - 1,3,5, ...,cQ. This is the 

result for a purely cantilevered rod, On the other hand, as E,  4 00, 3 nn, with 

n = 0,1,2,. . . ,oo, which is the solution for a rod clamped at both ends. 

Presented in Table S for a uniform rod are nondimensional frequencies calcu- 

lated from Eq. (5.38). Comparisons are made with the exact results of Eq. (5.41). 
The frequencies are presented for the first three modes and are calCulated for several 

values of the restraint spring stiflness E,,. These calculations make use of a Jacobi 

integrating matrix corresponding to six collocation points. The exact frequencies 

listed under X, - 1 x IO6 actually correspond to E,, - 00. This gives a valid com- 

parison with the integrating matrix solutions since values of the spring stiffness 

larger than 1 x IO6 produce no significant changes in the integrating matrix results 

when using single precision calculations. 

5.1.4 Rods with Concentrated Mass 

Another important example deals with the vibration of rods having concen- 

trated mass points in addition to continuously distributed mass properties. The 

approach to solving problems with concentrated masses involves a simple extension 

of methods already presented for continuous parameter problems. This extension 

of the foregoing methods is presented in Appendix E, which discusses the treatment 
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of any type of concentrated loading. For the problem at hand, the point loads arise 

from concentrated masses. 

The problem to be considered in this section is the axial vibration of a can- 

tilevered rod with a tip mass. The method of solution will be that of Appendix 

E, but one should note that for this particular problem the mass provides a tip 

boundary condition that can also be handled with the approach given in the pre- 

vious section. Since the solution turns out to be an extension of that presented in 

Section 5.1.1, the matrices defined in Eqs. (5.13-5.15) still apply. To account for 

the concentrated inertia loads, however, it is necessary to include from Eq. (E.ll) 
the matrix 

(5.43) 

Notice that this matrix is the same as F in Eq. (5.15) with the summing matrix S 

substituted for the integrating matrix. A second matrix that must be added is the 

matrix containing the concentrated mass terms specified at the collocation points. 

For the problem under consideration this matrix is 

r" 1 
(5.44) 

where Wr,+ = m,/mRC is the tip mass nondimensionalized by the total mass of 

a reference rod (i.e., mn is a total mass and m R  is a running mass). With the 

defined in Eqs. (5.43-5.44), the eigenvalue problem given by Eq. (E.16) can 

be written as 
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This eigenvalue problem is the extension of Eq. (5.18) to include point mass terms. 

For a uniform beam, Eq. (5.45) simplifies to 

((LL; + cq'.I,+) - (i/x)r){~} = o (5.46) 

where it should be noted that the lumped tip maSS will only affect terms in the last 

column of the matrix from which the eigenvalues are found. 

Exact solutions for the eigenvalues of a similar Sturm-Liouville problem can 

be found in Section 5.9 of Meirovitch [42]. The transcendental equation for the 

eigenvalues is given by 

Upon examining this equation, one finds that when mn -0, then 6- nrr/2, with 

n = 1,3,5,. . ,w. Similarly, as m, + 00, 64 nn, with n - O,1, 2,. . . ,oo. In physical 

terms, as the tip mass tends to zero, the eigenvalue solution reduces to that for B 

simple cantilever rod. As the tip mass grows very large, the solution approaches 

that for a rod clamped at both ends. 

Table 6 gives for a uniform rod the nondmensional frequencies calculated 

from Q. (5.46). Comparisons are made with the exact results of Eq. (5.47). The 

frequencies are given for the first three modes and are calculated for several values 

of the tip mass ratio wi:. Calculations are based on a Jacobi integrating matrix 

corresponding to six collocation points. The exact frequencies that are listed under 

pgC;t - 1 x 108 actudy correspond to m,+ = 00. This gives a valid comparison 

with the integrating matrix solutions since values of the tip mass ratio larger than 

1 x IO8 produce no further changes in the integrating matrix results when using 

single precision calculations, 
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5.2 Bending Vibration of Beama 

Applications of the hybrid state vector approach are n examined for beam 

vibration problems. Since beam vibration analyses are so common in structural 

dynamics and aeroelasticity, it is useful to give them a separate treatment. The 

following problems demonstrate the application of hybrid state vector techniques to 

the lateral vibration of beams with various type of boundary conditions, including 

unrestrained beams possessing rigid body modes. Sample results are presented for 

uniform beams. 

The differential equations that describe lateral vibration of isotropic beams are 

well known. Rather than rederiving the nondimensional state vector equations, 

they can be extracted from the anisotropic beam equations given in Section 2.3. 

After including inertia terms and neglecting transverse shear effects, the appropriate 

equations can be written as 

where 

m m=- 
mR ’ 

and 

(5.49) 

(5.50) 

Other nondimensional terms are as defined in Eq. (2.29) and Eq. (2.31), with E taken 

to have unit value for a beam. 
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Irrespective of boundary conditions, one can begin the solution of Eq. (5.48) by 

discretizing, multiplying through by the global integr 

constant vector of integration. In a manner 

can be expanded into the set of equations 

5.8), this resuit 

(5.5 1) 

(5.52) 

(5.53) 

(5.54) 

Boundary conditions can be applied to these equations to solve for the constant 

vectors of integration. 

The basic approach to be used in solving for the constants of integration of 

two-point boundary value problems is demonstrated in Section 5.1.1. Only the 

important aspects of boundary condition determination will be addressed in detail 

in the following problems, It is worth noting, however, that there is a recommended 

procedure to simplify the solution for boundary Conditions. One should first apply 

any homogeneous or nonhomogeneous boundary conditions at the end z = 0. It is 

assumed that this end is the starting point for the integrations performed by the 

integrating matrix. The second step is to apply boundary conditions at the point 

z = 1 (assuming, of course, a normalized int z - [0,1] ). This second step often 

involves applying boundary conditions to variables that were already used 

in the boundary conditions at z - 0. When this occurs, one must express these 

variables in terms of the remaining unused variables to insure that all unknown 

constants are determined. An important requirement when solving for constants of 

integration is that the resulting boundary condition matrix 6 be block diagonal. 
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5.2.1 Cantilevered Beam 

A cantilevered beam offers simple boundary conditions from which the con- 

stants of integration are readily determined from Eqs. (5.51-5.54). The boundary 

conditions to be satisfied are given by 

do) = 0, =to) = 0, X(1) = 0, V(1) = 0. (5.55) 

It is clear from the first two conditions that k, = It, - 0. The boundary conditions 

at the free end of the beam yield 

H =  

k, = XB,L'iisr(~'}. 

Lf 0 0 : I O O 1 .  

0 

-L'm 0 I 0 

0 0 L I  

With these constants determined, one finds that 

and as a result, 

L? 0 0 

0 L? 0 

0 0 -L 

0 0 0 - L  

From Eq. (4.25), one then obtains 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 
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which, when substituted into Eq. (4.28), yields the eigenvalue problem 

[L2* FRf2’m - (l/X)I]{W) = 0 .  (5.61) 

This simplifies for a uniform beam since ‘E7 and ‘m are then identity matrices. 

It should be noted that the row and column of EQ. (5.61) corresponding to the 

constrained lateral displacement at the fixed end can be deleted before solving for 

the eigenvalues and eigenvectors. 

Results are presented in Table 7 for the nondimensional frequencies of a uniform 

cantilevered beam. The numerically computed results are based on a Jacobi in- 

tegrating matrix for five collocation intervds and are compared with exact results 

tabulated by Hunter 1271. One can also refer to Hunter for detailed Newton in- 

tegrating matrix solutions of the cantilevered beam problem. 

Mode shapes corresponding to the first three modes of the Jacobi solutions 

are given in Table 8. The accuracy of the higher modes can be improved further 

by adding rotary inertia and transverse shear terms to the analysis. The mode 

shapes in Table 8 were interpolated to the evenly spaced grid points with a Jacobi 

polynomial of the same order used in the integrating matrix solution. Sone of the 

aspects of this type of interpolation are discussed in Section 5.1.1. 

5.2.2 Simply Supported Beam 

A simply supported beam requires boundary conditions to be applied to both 

moment and lateral displacement variables at both ends of the beam. The familiar 

boundary conditions for a simply supported beam are concisely stated as 

X(0) =c 0, NO) - 0, Z(1) = 0, @l) = 0. (5.82) 

The boundary conditions at J = 0 applied to Eqs. (5.51) and (5.54) yield immediately 

Em = x w  =O. (5.63) 
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To apply boundary conditions at z = 1, it is necess 

and v in terms of the other unknown constants appearing in Eqs. (5.52) and (5.53). 

These expressions are 

ions 

F =  

(5.64) 

(5.65) 

'-L 0 0 

0 

0 0 (BnL-I)L 0 
(5.67) 

0 (BnL-1)L 0 

b o  0 0 

After applying the boundary conditions at z = 1 and making use of the two 

identities k j  - f k j  and bKLi = 1, one obtains the results + 

(5.66) 

which leads to 

From Eq. (5.67), one then obtains in the manner of Section 5.2.1 'that 

l-u;*m LL;*EAL;J 
from which follows the reduced ei 

(5.68) 

[LL;'Ru;bi - (1/X)I](W} - 0 .  (5.69) 

Results are presented in Tab1 for the nondimensional frequencies of a uniform 

ed beam. The puted results are based on Jacobi 

integrating matrices and are compared with exact results given in Ref. [45]. 
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5.2.3 Hinged-Free Beam 

The hinged-free beam considered in the following analysis is assumed to be 

simply supported at z - 0 and unrestrained at z = 1; this leads to a single rigid 

body mode in rotation. Boundary conditions for this beam are specified by 

m o l  - 0, Mol = 0, X(1) = 0, V(1) = 0. (5.70) 

From the conditions at z = 0 it is easily found that 

k, k, 0, (5.71) 

and at-z = 1 one readily has 

k, = XB,L'~R{W}. (5.72) 

To complete the solution for the remaining constant of integration, it is necessary 

to write an expression for X in terms of It,. After substituting Eqs. (5.11-5.72) into 

Eqs. (5.51-5.54), this expression can be obtained in the form 

From the boundary condition X(1) - 0, one then obtains the result 

where 

(5.74) 

(5.75) 
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The foregoing solutions for the constants of integration lead to the expressions 

'-L 0 

0 Lf 

0 0  

b o  0 

0 0 

:j 
-L 

0 (8 , -I)L 0 

0 0 (c7BnLLf'rn - I)L 0 I F =  

l o  0 0 -d 

and 

L$ 0 

~~ 0 -  

(5.76) 

(5.77) 

F'rom Eq. (S.77) follows the reduced eigenvalue problem 

JLL3*9my'sA -(l/h)I]{@ = 0. (5.78) 

Results are presented in Table 10 for the nondimensional frequencies of a 

uniform hinged-free beam. The numerically computed results are based on Jacobi 

integrating matrices and are compared with exact results obtained from the expres- 

sion tan ,9 - tanh B - 0, where fi - B2 is the nondimensional frequency. 

Solutions for the eigenvalues of Eq. (5.78) can be obtained without having to 

apply constraint equations. Constraint equations do exist, however, in problems 

with rigid body modes. The presence of constraints in an eigenvalue problem will be 

evident from the existence of zero eigenvalues. With finite precision calculations, the 

zero eigenvalues are not guaranteed to be exactly zero for nonsymmetric eigenvalue 

problems like that in Eq. (5.78). In practice, these zero eigenvalues can appear as 

very small positive or negative quantities, and in some cases, complex quantities 

with very small real parts. The appearance of these parasitic eigenvalues is not 

an indication that a solution has gone astray; parasitic eigenvalues can simply be 
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neglected. In Eq. (5.78) the eigenvalues are related to reciprocals of the vibration 

frequency; therefore, the parasitic eigenvalues will equivalently manifest themselves 

as very high frequencies. 

For problems with rigid body modes, conservation of linear and angular momen- 

tum provide the constraints that can eliminate associated zero eigenvalues. The 

constraint arising from linear momentum conservation is 

lo ibmdz-0, 

which, for free vibration, leads to the discrete constraint equation 

bzL{em) - 0. 

Similarly, the constraint given by angular momentum conservation is 

4' Gmz dz - 0, 

(5.79) 

(5.80) 

(5.81) 

which results in 

bEL{wrnz) E: 0. (5.82) 

These constraint equations can be used to reduce an eigenvalue problem as discussed 

in Appendix F. 

5.2.4 F'ree-Free Beam 

A free-free beam possessing rigid body translation and rotation modes presents 

a slightly more complicated solution for the constants of integration. Nonetheless, 

the procedure to be followed is similar to that used in previous problems. The 
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boundary conditions €or the free-free beam are given by 

--L 0 0 0 '  

0 - L O O  
= 

0 0 L ; O  

0 0 

0 -L 0 0 

o o (e,anL2'7Rt;-i)L 0 

(CwBnL'rrr- I) 

F- 

X(0) = 0, V(0) = 0, X(1) = 0, V(1) = 0. (5.83) 

(5.87) 

The application of these boundary conditions to Eqs. (5.51-5.54) gives the constants 

of integration 

where 

(5.84) 

(5.85) 

and 

Lt - (c,B,L'i?s - I)L. (5 38)  

These results then lead to the expressions 

l o  0 0 

and 

T= (5 2 8 )  
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With the aid of Eq. (5.881, the reduced eigenvalue problem is given by 

[LfL:'Ffl2'm- (1/X)I](m) = 0. 

For a uniform property beam the eigenvalue problem reduces to 

[L$L;L2 - (I/X)IJ{W} = O 

where 

LS - (C,B,L2L$ - I)L 

and 

1 

(5.89) 

(5.90) 

(5.90) 

(5.91) 

Note that Lg is the same as given in Section 5.2.2. 

Table 11 gives the results for the nondimensional frequencies of a uniform 

free-free beam. The numerically computed results are based on Jacobi integrating 

matrices and are compared with exact results obtained from (coshp)cos@ - 1 = 0, 

where fi = B2 is the nondimensional frequency. If desired, constraint equations 

that reduce out the rigid body modes can be applied as discussed in the previous 

section. 

5.3 Buckling of a Rotating Beam 

Xn the followiug analysis, the state vector approach will be used to obtain 

solutions for buckling instabilities of the cantilevered, inward oriented rotating beam 

pictured in Fig. 8. Buckling is assumed to take place in the plane of rotation. 

Since this problem has been thoroughly examined by many investigators, results 
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Fig. 8. Rotating beam geometry 

are available with which to compare the integrating matrix solutions. This analysis 

demonstrates that solutions can be easily obtained for many problems involving 

aeroelasticity, buckling, or vibration of rotating machinery. 

The state vector equations to be employed in the buckling analysis compare 

directly with the equations used by Steele and Barry [13]. Considering bending 

deformations in the plane of rotation, the nondimensional form of these equations 

is given by 

. 

where the nondimensional tension parameter Ft is given as 

F:(S) - (1/2) [(a8 - 1P - ( 0 8  - .>"I 

(5.92) 

(5.93) 

with 

a, = &/C. 
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The nondimensional spin parameter A, is given by 

(5.95) 

Except for the displacement dependent load terms, these equations are very similar 

to those presented in &. (5.48). The solution to Eq. (5.92) is readily obtained by 

using the T matrix presented in Eq. (5.60) for cantilever boundary conditions. The 

resulting buckling eigenvalue problem is given by 

7 

iiii 
[TAFD - (1/Ae)l]{ } = 0 (5.96) 

where 

(5.97) 

Results are given in Table 12 for the nondimensional critical buckling speed iI 

of a uniform beam, where iI = a:&. The buckling speeds, which are presented 

for varying values of the parameter a,, are compared with numerical solutions 

given in Ref. [13]. These comparison solutions consist of results from an asymptotic 

iteration scheme as well as results from a high order Ritz finite element method 

due to Hodges {49]. Further elaboration on these critical buckling speed solutions 

is given by White, Kvaternik, and Kaza I311 and by Peters and Hodges [SO]. 

5.4 Deflection of Beams 

Static beam deflections and forces can be easily and accurately calculated 

with the hybrid state vector approach. The nondinnensional state vector equations 
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describing lateral deflection of a beam under an applied loading p are 

. .* 
where 

(5.98) 

p=-. P@ (5.99) 
(EQR 

Solutions to Eq. (5.98) are given by Eqs. (4.23) and (4.24). If aerodynamic loads 

are not present, one must take X = 0. Noting that H ~ D  = 0, then for cantilever 

boundary conditions the deflection and force solutions are given by 

YD T i r F ,  (5.100) 

(5.101) 

By using the T matrix in Eq. (5.60), these solutions can be further refined to give 

and 

(5.102) 

(5.103) 

As 811 indicator of solution accuracy, one can easily verify with a sample calcula- 

tion that a four interval Jacobi integrating matrix solution will provide the exact 

deflections for a uniform cantilevered beam having a constant load distribution. 
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It should be noted that matrix inversions are not required in solving for either 

forces or displacements. Deflection solutions sirnilax to these are used to obtain 

static aeroelastic lift distributions in the next chapter. 
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Table 1 

5 -  

3 8.807365 8.070704 7.853982 12.1388 2.75939 
4 25.64255 21.64282 10.99557 133.208 96.8321 
1 1.570797 1.570803 1.570796 .00064 .000446 
2 4.713869 4.706141 4.112389 .031407 -.132587 
3 8.011505 7.631141 7.853982 2.00564 -2.83730 
4 13.27345 11.23810 10.99557 20.7163 2.20567 
5 38.40523 29.57599 14.13717 171.661 109.207 

Table 2 

Jacobi 0.OOOOO 0.91354 -.01155 -A7489 -.OW62 
Newton 0.OOoOO 0.98697 -.03503 -.95027 -.08023 
Emt O.OOOO0 1.OOOOO O.OOOOO -1.oooO O.OOOO0 

Axial vibration mode shapes, {a), for a uniform cantilevered rod 
(Numerical solutions obtained with five collocation intervals) 

1.OoooO 
1.OoooO 
1.OOOOO 
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Nondimensional frequencies, A l l 2 ,  for the axial modes of a linearly 
tapered cantilevered rod with N collocation intervals. (at = 0.5 ; 
x - W ~ ~ R C ~ / ( E A ) R )  

% Error 
Exact Jacobi Newton 

3.627852 207.584 207.584 
1.652805 -.578834 -741709 
3.827852 -. 1.12257 -2 a 54 137 
5.807501 285.601 250.989 

1.652805 -2.40258 -2.40258 

1.652805 
3.827852 
5.807501 
8.2 1 5935 
1.652805 
3.627852 
5.807501 
8.215935 
10.27790 

.006534 
-1.31844 
4.01159 
359.694 
BO1271 
.160481 

-1.478 16 
9.58381 
457.67 1 

--,226100 
.852736 

-3.18278 
276.719 
.022991 

- .5 19784 
1.37793 

-7.60500 
313.780 



n b l e  4 

Nondimensional frequencies, A l l 2 ,  for the axial modes of a three 
segment cantilevered rod with discontinuous stiffness and mass. 
There are N collocation intervals per segment. (A = w 2 m ~ t 2 / ( E A ) ~ ;  
"J = 10, B = 100; Error based on six significant figures) 

N Mode Jacobi Newton 
1 1 .8336431 .8336431 

2 22.20007 22.20007 
3 121.7023 121.7023 

2 -  1 3267307 .8267298 
2 6.729430 6.729422 
3 19.03003 19.03001 
4 41.08241 41.08287 

* 5 85.58076 85.56099 
3 1 .8267099 .8267071 

2 6.139068 6.082418 
3 14.52343 13.85007 
4 19.45551 19.33504 
5 38.17844 37.79570 

4 1 3267105 3267104 
2 6.099150 6.085790 
3 12.34547 11.82625 
4 18.831 18 18.54741 
5 25.28983 22.48438 

5 1 .8267107 .8267107 
2 8.097375 6.097551 
3 12.wOOO 11.86734 
4 18.17894 17.10370 
5 20.28574 19.38240 

% Error 
Exact 

.8267091 
6.097328 
11.98907 
.8267091 
6.&7328 
11.98907 
17.57944 
19.46456 
.I3267091 
6.097328 
11.98907 
17.57944 
19.46456 
.8267091 
6.097328 
11.98907 
17.57944 
19.46456 
,8267091 
6.097328 
11.98907 
17.57944 
19.46450 

Jacobi Newton 
.838747 338747 
264.095 264.095 
915.105 915.105 
,002661 .002540 
10.3068 10.3667 
58.7275 58.7275 
133.696 133.699 
339.571 339.572 
,000121 -BO0242 
A84562 -.244533 
21.1384 15.5224 
10.6722 9.98689 
96.1427 94.1768 
.om121 .000121 
.029849 -.189263 
2.97270 -1.35790 
7.12083 5.50645 
29.9271 15.5143 
.OW242 .000242 
.Om820 .003608 
.341143 - 1.01 592 
3.41024 -2.70601 
4.21843 -3422331 
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Table 5 

Nondimensional frequencies, A l l 2 ,  for the axial modes of a uniform 
cantilevered rod with variable stiffness elastic restraint at the free 
end. Results were obtained with a Jacobi integrating matrix wing 
six collocation points. & - ~ / ( E A ) R  ; X - w2rnR@/(EA)R) 

Tsble 6 

Nondimensional frequencies, A l l 2 ,  for the axial modes of a uniform 
cantilevered rod with tip mass. Results were obtained with a Jacobi 
integrating matrix using six collocation points. (m: = m,/mRt ; 
X - w2rn~t2/(EA),) 
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Table 7 

Mode 
Calculated 

&act 

1 2 3 4 5 
3.516022 22.04884 84.15257 178.0921 1032.319 
3.516015 22.03449 61.69721 120.9019 199.8595 

Table 8 

Lateral bending mode shapes, {w}, of a uniform cantilever beam 
(Jacobi integrating matrix solution using five collocation intervals) 
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Table 8 

Nondmensional bending frequencies, of a uniform, simply 
supported beam with N collocation interne (A - d r n R t * / ( E I ) R )  

41.99992 39.4784 

39.76482 39.4784 
102.1309 88.8264 
380-2456 157.9137 

Table 10 

Nondimensional bending frequencies, X1i2, of a uniform, hinged- 
free beam with N collocation interv8ls; (A - w 2 m ~ c ' / ( E I ) ~ )  

50.88158 49.904 
131.8585 104.2477 
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Table 11 

4 1 22.61 198 22.37332 
2 76.68076 61 .at503 

5 1 22.38678 22.37332 
2 84.21040 61.68503 
3 174.3449 120.9027 

L 

Nondimensional bending frequencies, Al l2 ,  of a uniform, free-free 
beam with N collocation intervals; (A - w2rn&/(EI)R) 

N Mode Jacobi Exact 
3 1  1 I 24.49481 22.37332 

a# 
.2 
-5 
1 .o 
1.5 
2.0 
3.0 
4.0 

WKB Hodges State Vector Method 
Direct Ritt 

Integration FEM N = 5  N - 4  N - 3  N - 2  
.35 3 5  .35 .35 .35 .65 
1.13 1.13 1.13 1.13 1.13 1.19 
2.96 2.99 2.99 2.99 2.99 3.05 
5.35 5.38 5.38 5.38 5.38 5.46 
8.27 8.19 8.19 8.19 8.19 8.30 
14.91 14.87 14.87 14.87 14.89 15.05 
22.70 22.77 22.77 22.77 22.81 23.03 

mble 12 

Nondimensional buckling speeds, $2, of a uniform, inward-oriented, 
rotating beam. Jacobi integrating matrix solutions with N colloca- 
tion intervals. (n - a?&) 



Chapter. 6 

Divergence and Aeroelastic Lift of 
Composite' Wings 

STATIC AEROELASTIC BEHAVIOR, which includes both divergence instability 

and aeroelastic lift distribution, is an important consideration in the design of 

elastically flexible lifting surfaces. An innovative approach to aeroelastic design 

is provided by the concept of aeroelastic tailoring, which addresses the problem 

of designing a flexible lifting surface to take advantage of structural deformation. 

Essentially, one strives to control the deformation, and thus the load distribution, in 

a way that enhances aerodynamic performance. Because of their unique directional 

properties, advanced composite materials prove to be an important ingredient in 

many tailored designs. 

Along with the increased design flexibility allowed by composite materials, there 

comes an additional complexity in the structural analysis. The hybrid state vector 

method discussed in previous chapters provides a simple, yet powerful tool for 

analyzing large aspect ratio composite lifting surfaces. The primary focus of this 

chapter is on applying the anisotropic beam equations developed in Section 2.3 to 

the static aeroelastic malysis of forward swept composite wings. 

The potential benefits of aeroel&tic tailoring applied to forward swept com- 

posite wings Have been thoroughly examined by Weisshaar [4,5,51]. In order to 
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facilitate the verification of the hybrid state vector solutions, the problems con- 

sidered in this chapter are similar in nature to those discussed by Weisshaar for 

uniform geometry wings. In the following analyses, aerodynamic loads will be cal- 

culated from modified strip theory aerodynamics. 

6.1 Divergence of a Forward Swept Composite Wing 

The cantilevered composite wing structure considered in the following analysis 

is identical to the lifting surface model presented in Fig. 1 of Chapter 2. The 

aeroelastic equations apply to aerodynamic sections taken normal to the swept 

structural reference axis. A detailed derivation of the differential equations for this 

plate-bearn model, including important assumptions, is presented in Section 2.3. 

It should be noted that for static aeroelastic stability calculations, these equations 

are, in fact, perturbation equations, with the state vector containing perturbation 

quantities. 

For the sake of simplifying the presentation, it is assumed that transverse shear 

terms can be neglected. Another important assumption to be used in the analysis 

is that the composite wing structure, which is modelled as an equivalent composite 

plate, can be considered as having the same properties as a midplane symmetric 

laminate. Primarily, this means that the Z(j coupling compliances in E!q. (2.28) will 

be taken as zero. 

For fixed wing problems, it is clear that no appreciable external spanwise loads 

exist. In the event that gj coupling compliances are included in the analysis, there 

will be induced spanwise loads that arise from satisfying the fifth equation in Eq. 

(2.28). These coupling-induced spanwise loads can be directly calculated if one has 

solutions for the static spanwise midplane deformations UO. If solutions for uo are 

not readily available, the coupling-induced loads can be approximately determined 
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by assuming that the spanwise strains and strain gradients are negligible. 

By following the hapter 4, the 

corresponding to Q. ed 

wing. When the ej terms are rix can be written as 

1 0 0 . .. 0 

L' B;~L; -L' X1~f2  L' q3~; 

A steady aerodynamics matrix based on strip theory can be extracted from the 

unsteady strip theory results in Appendix D by taking u* = 0, C(0) = 1.0, and 

R = 1.0. The resulting aerodynamic matrix is given by 

0 0 0  

0 0 0  

A~~~~ 'f, 0 'L* 
0 ' M ,  0 'Ma 

where the terms in A m  are obtained from the corresponding te rm of EQs. (D.1-D.2) 

in Appendix D. For example, X'f, = '&(a* - O,X), where X is a nondimensional 

dynamic pressure parameter (see Appendix I)). For large aspect ratio and moderate 

sweep angles, the terms . (D.3-D.4) involving ' f and ' Mr are negligible. 

E+ (4.29) leads to the divergence eigenvalue 

problem 
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where 

Since the divergence problem being considered involves neither axial loading 

nor constitutive terms that couple axial deformations with other degrees of freedom, 

one might expect that the use of simple strip theory aerodynamics, as given above, 

should allow representation of the eigenvalue problem in Fs. (6.3) in terms of an 

effective angle of attack. This is indeed the situation. 

In order to carry out the reduction to effective angle of attack, first note that 

because of the nature of the aerodynamic terms one can write 

Second, note that a constraint equation involving the effective angle of attack ae 

can be written as 

This constraint equation expresses the fact that the effective angle of attack for a 

swept wing consists of the actual twist of the wing plus an induced angle of attack 

that arises from lateral bending. F'rom this constraint equation, one can obtain the 

transformation 
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ELASTIC MODUCI: WING PROPERTIES: 
&/El 0.1 L/bR = 0.67 
G12/E1- 0.0373 bR = 1.0 
~ 1 2  = 0.25 i6= 1.0 

a0 = 2n 
~e - 0.5 
a = 0.34 

where 

"-I=[ -' tanA 1 3. 
By applying this transformation in the form of a similarity transformation to Eq. 
(6.3) while making use of E<1. (6.5), one obt&ins a reduced eigenvalue problem that 

can be written as 

Details on the transformation process used in obtaining Eq. (6.9) are presented in 

Appendix F. Note that either a s idar i ty  transformation or a congruence transfor- 

mation must be used since these transformations do not affect the eigenvalues. 

In order to verify solutions given by Eq. (6.9), divergence eigenvalues were 

obtained for uniform, forward swept, composite wings with cantilever boundary 

conditions. Verification was established by comparing the trends of the results 

with analytical solutions given by Weisshaar 141. The data used in the analysis 

axe presented in Table 13, and , composite wing analyzed 

by Housner and Stein 1521. These data itre also used in a composite wing flutter 

analysis presented in Chapter 7. 

taken from a un 
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From the material parameters listed in Table 13, angleply laminate stiffnesses 

were calculated for a midplane symmetric composite plate by using the methods 

given in Appendix C. A special form of these calculations for angle-ply laminates is 

given in Section 4.4.4 of Jones [25]. Box beam type structures are easily analyzed 

by carrying out the analyses in terms of an equivalent composite plate. Divergence 

solutions were investigated for laminates having nondimensional stiffnesses equiv- 

alent to an angle-ply laminate with a given number of layers. Since the magnitudes 

of the composite laminate coupling terms vary with the number of layers, this allows 

investigation of the effects of coupling stiffness on divergence velocity. The max- 

imum values of coupling are obtained for a laminate with a single layer (i-e., the 

same as multiple layers with all layers oriented in the same direction). Thus, a single 

layer angle-ply laminate provides a limiting case solution. As the number of layers 

increases, the coupling terms decrease and the laminate tends toward quasi-isotropic 

behavior. 

Fig. 9 displays the variation of the nondimensional bending and torsion com- 

pliances for a single layer angle-ply laminate as the fiber orientation angle varies. 

Material properties were taken from Table 13. The orientation angle 6, positive as 

shown in Fig. G 2 ,  is measured with respect to the laminate reference axis, which 

in the following problems will be assumed the same as the structural reference axis. 

For analyzing a composite wing, the structural reference axis is chosen as the mid- 

chord of the structural box, since the composite stiffness expressions are developed 

with respect to this axis. One should note that G1 and are symmetric with 

respect to 8 = 0, whereas the coupling term G3 is antisymmetric in 8. The com- 

pliances in Fig. 9 are nondimensionalized as shown in Eqs. (2.30) and (2.32), with 

the reference stiffness chosen to be Dl1 evaluated at 6 = 0. 
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0 15 30 45 60 75 90 

FIBER ANGLE, 8 (DEG) 

Fig. 9. Nondimensional compliances for a symmetric angle-ply 
laminate with a single layer 

Presented in Fig. 10 are the nondimensional divergence velocities of a uniform, 

cantilevered, composite wing that is swept forward 30 degrees (A = -30"). Data 

are taken from Table 13. The nondimensional divergence velocities are plotted as a 

function of the fiber orientation angle for the equivalent of a midplane symmetric 

ply laminate. The reference divergence velocity for this figure is the velocity 

8 - -W. Three curves are s cor- 

ith one, five, and fifteen pling stifhesses equivalent to 1 

layers. As can be seen, the predicted divergence vel0 

range of fiber orientation angles greater than zero. These angles correspond to fibers 

ented ahead of t 
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VELOCITY 
PARAMETER 

77- 

6 -  

5 -  

4 -  

2t 

@-& e 

0 ‘  I I 
I 1 I I t I I I I I 

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 

FIBER ORIENTATION ANGLE, 6 (DEG) 

Fig. 10. Nondimensional divergence velocities of a uniform, can- 
tilevered, composite wing-symmetric angle-ply with 1, 
5, and 15 layers. (A = -3V, X R E F  - X(A---3p,#---g(P) ) 

indicating that divergence does not occur for these fiber angles. The largest range 

of infinite divergence velocities is exhibited by the single layer equivalent laminate, 

which possesses the largest value of bending-twist coupling. Although the bending- 

twist coupling is not the only factor determining the divergence velocity, it is clear 

that it has a dominant effect. The physical reason underlying the importance of 

the coupling stiilness is that it can give a lifting surface a washout property, mean- 

ing that bending of the surface, and resulting twist, act to alleviate the excessive 

buildup of aerodynamic loads. 

Similar divergence velocity solutions are given in Fig. 11 for a wing that is 

swept forward 60 degrees (A = -W). Again, three curves are presented, each 
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VFLOCITY 
PARAMETER 

( ~ / L F ) ” z  

I t I I t I I I I I I 

-90 -75 -80 -45 -30 -15 0 15 30 45 60 75 90 

FIBER ORIENTATION ANGLE, 6 (DEG) 

Fig. 11. Nondimensional divergence velocities of a uniform, can- 
tilevered, composite wing-symmetric angle-ply with 1, 
5, and 15 layers. (A - -W, XREF - X(A--3(p,dI-9,p) ) 

corresponding to an equivalent angle-ply laminate with a specified number of layers. 

The reference velocity is the same as that in Fig. 10, which is the divergence 

velocity for a single layer laminate having a fiber orientation of 8 = -90“ and a 

forward aerodynamic sweep of 30 degrees. For this example, no infinite divergence 

velocities are predicted since the coupling and bending stiffnesses are not large 

enough to completely override the aerodynamic loading. The maximum values 

of divergence velocity still occur at fiber orientation angles slightly ahead of the 

structural reference axis. An interesting point to note from Fig. 11 is that the 

result for a laminate with 15 layers, which has only a small amount of coupling 

stiffness, is nearly symmetric about B = 0. This indicates that the behavior of B 
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wing with 60 degrees of forward sweep is also strongly influenced by the bending 

stiffness. The bending stiffness is symmetric in B and peaks at B = 0. 

For composite materials that are dif€erent from the one on which Figs. 10 and 

11 are based, one can expect the locations of the peaks in the divergence velocity 

to shift slightly. These shifts are possible because other composites may exhibit 

ditrerent ratios of coupling to bending stxness. The basic trends demonstrated are 

expected to be valid, however, for any type of unidirectional laminated composite. 

The trends demonstrated in Figs. 10 and 11 are corroborated by the analytical 

results presented by Weisshaar [4). 

6.2 Aeroelastic Lift of a Forward Swept Composite Wing 

Of great interest in aeroelastic design is the equilibrium lift distribution of a 

flexible wing, especially since aerodynamic efficiency is strongly impacted by the lift 

distribution. The lift distribution of a flexible wing is also closely tied to maneuver 

performance as well as to divergence instabilities. That is, the combined bending 

and twisting of a loaded wing can act either to amplify or to attenuate the loading 

and the bending moments associated with disturbances about a nominal equilibrium 

# 

lift condition. 

Successful design of forward swept wings hinges upon the ability to “tailorn 

the lift distribution. Composite materials offer significant advantages in the design 

and construction of lifting surfaces that are tailored to maintain favorable defor- 

mation patterns, and therefore favorable lift distributions, over a range of flight 

conditions. The following analysis investigates solutions for symmetrical aeroelastic 

lift of forward swept, cantilevered wings. These wings can be described by the same 

composite platebeam model employed in Section 6.1. 

The approach adopted in solving for the lift distribution involves specifying 



the pitch attitude (angle of 

the initial load distribution fr 

total deformation of 

deformation component. Correspondin 

(assuming linear aerodynamics) is the s 

A similar approach has been used by Diederich and Foss 131 to study the lift of 

metallic swept wings, and by Weisshaar 151 to examine the lift of composite wings. 

Further elaboration on solutions for aeroelastic lift distribution can be found in 

Chapter 8 of Bisplinghoff, Ashley, and Halfman [45]. 

Ekpations that provide the lift distribution solutions for the aforementioned 

composite plate-beam can be obtained by substituting Eqs. (6.1-6.2) into Eq. (4.26), 

resulting in 

(0.10) 

where the G terms are given by &. (6.4). The attitude of the rigid wing is 

specified by 7r and at. Similar to the reduction of the dependent variables in the 

divergence problem of Section 6.1, the linear system in &. (6.10) can be reduced 

to an effective angle of attack variable, a e ,  since neither axial loading nor axial 

deformation coupling terms are present. By employing the same relationships and 

the same approach presented in Eqs. (6.5-6.8), Eq. (6.10) reduces to 

where 

(6.1 1) 

(6.1 2) 

To t r  ibu t ion solutions 

(6.11) for a uniform, swept-forward composite wing. Material property data for the 
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analysis were taken from Table 13, and aerod ads were calculated with the 

aid of simple strip theory aero for the 

maximum and minimum values of normalized elastic lift distribution, CG/Ce,, 85 

a function of the nondimensional spanwise coordinate z. A symm 

composite with a single layer has been assumed (Le., all fibers are oriented in the 

same direction). Since the lift curve slope is assumed constant, e use of strip 

theory aerodynamics allows the lift distributions to be calculated as the ratio of 

elastic wing deflections (effective angle of attack) to rigid wing deflections. For 

solutions obtained in this manner, it is convenient to specify the rigid wing effective 

angle of attack as a unit value. Also specified prior to the solution o€ Eq. (6.11) is 

the nondimensional dynamic pressure parameter A. The value for this parameter 

was arbitrarily picked to be one half of the divergence dynamic pressure parameter 

for a wing having 60 degrees of forward sweep and an angleply fiber orientation 

angle of 8 - -900. 

For the wing used in the analysis, it is assumed that all fibers are oriented at 

an angle B with respect to the structural reference axis. The results display for each 

constant wing sweep angle the fiber orientation angle that corresponds to either the 

maximum load amplification or attenuation that can be achieved by orienting the 

reinforcing fibers. Hence, these solutions are an indicator of the maximum amount 

of "tailoring" that can be achieved for a given configuration and material. The 

designs that fall below the dashed rigid wing reference line in the figure are referred 

to as load attenuating designs, while those above the reference line correspond to 

load amplifying designs. It is interesting to note that the maximum amount of lift 

attenuation, which also corresponds to maximum divergence speed, occurs when 

the fibers are oriented ahead of the structural reference axis. Those swept-forward 

Wings below the dashed rigid wing reference line are 

in fact displaying the load alleviating property of an isotropic swept-back wing. 
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Fig. 12. Limiting elastic lift distributions for a uniform com- 
posite wing-symmetric angle-ply with a single layer 

These results are verified by an analytical solution developed by Weisshaar 151 for 

normalized elastic lift distribution of uniform composite wings. A comparison of 

the analytical solutions with the approximate Jacobi integrating matrix solutions 

(based on five discretization intervals) shows a maximum deviation from the true 

lift distribution curves of less than one-tenth of one percent. 

Another conclusion that comes from Fig. 12 is that the wing of this example, 

with 60 degrees of forward sweep, never completely reaches the load attenuating 

region. This corresponds to the fact that for A - -W, the wing will always possess 

a finite divergence velocity. For the other wing sweep angles given in the figure, 

there exists a fiber orientation angle for which the result is coincident with the rigid 

wing reference solution. Such designs are referred to as octo-isoclinic and have 
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neither a load attenuating nor load amplifying character. 



Chapter 7 

Flutter of Isotropic and Composite Wings 

DYNAMIC AEROELASTIC BEHAVIOR will now be examined for both isotropic 

and composite wings having cantilever boundary conditions. The solutions to be 

pursued in the following problems will yield the airspeeds associated with flutter 

instabilities. For composite lifting surfaces, it will be shown that the fiber orientation 

angles have a very strong influence on the points of instability, as well as on 

the subcritical dynamic response. It should be pointed out that the following 

investigations are meant only to demonstrate the solution capabilities available with 

the hybrid state vector approach. A detailed investigation of various types of flutter 

phenomena is not attempted here since the scope of such a study falls outside the 

objectives of the present work. 

In the sample flutter calculations to be presented, a single formulation of the 

flutter equations will be used that is appropriate for anisotropic structures; isotropic 

structures are simply considered as a subset of the anisotropic case. The approach 

used to obtain the subcritical dynamic response and the flutter points involves 

tracing out the complex roots loci of the matrix flutter equations. A description of 

this solution process will be presented in the course of the following analyses. 
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7.1 FIutter Equations 

The general form of the flutter eigenvalue equation to be used was presented 

in Eq. (4.30). It appears as 

where MFD is the discrete mass matrix for the lifting surface, CFD is a damping 

matrix, and QFD is an unsteady aerodynamic matrix. Note that EQ. (7.1) is actually 

theLaplace transform with respect to time of the homogeneous, unsteady aeroelastic 

equations. It is assumed that the equations have been nondimensionalized such that 

8* is a nondimensional, complex-valued, Laplace transform variable given by 

rtnd iD is a nondimensional complex eigenvector. Also note that in the present 

application X is a dimensionless dynamic pressure parameter whose definition is 

given in Appendix D. 

Precise forms of the matrix terms in Eq. (7.1) are taken to correspond to the 

anisotropic platebeam equations presented in Eq. (2.28). The unsteady aerody- 

namic matrix, which will be calculated from modified strip theory, is given in 

Appendix D. The T matrix has aieady been presented in Eq. (6.1) for cantilever 

boundary conditions. It will also be assumed for convenience that the damping 

terms are zero for the following analyses. In nondimensional form, the mass matrix 

in &. (7.1) can be expressed as 
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where 

The term xa represents a section mass static unbalance about the structural refer- 

ence axis, and represents a section dimensionless radius of gyration. 

Taking into consideration the zero columns in the mass and aerodynamic 

matrices, it is readily shown for the case of no damping that the flutter eigenvalue 

problem can be reduced to 

where 

Even further, the first row and first column of Eq. (7.5) can be dropped if the lifting 

surface has no aerodynamic sweep. Eq. (7.5) can be numerically evaluated for the 

roots loci of the aeroelastic modes as a function of the dynamic pressure parameter 

A, with instability being associated with complex roots a* having positive real parts. 

The procedure used in the present analyses to trace out the complex roots loci 

was based on a determinant iteration scheme. A determinant iteration method has 

the advantage of being simple to implement, and furthermore, it is not restricted 

to solving a particular form of the flutter equations. If desired, the determinant 
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method can easily solve the flutter equations when the unsteady aerodynamic terms 

are calculated directly from the Bessel function representation of the generalized 

Theodorsen function. 

Since the roots of the flutter equation correspond to the zeroes of the deter- 

minant of the complex-valued matrix in Eq. (7.5), the determinant method simply 

searches for these zeroes. For a given dynamic pressure and a trial root, the deter- 

minant is numerically evaluated from the product of the diagonal terms of the tri- 

angular factor that is obtained by applying Gaussian elimination. Muller’s method 

is used to iteratively search for the complex roots of the determinant. 

A computer code for determinant iteration was developed directly from routines 

available in Chapters 2 and 3 of a n t e  and de Boor (381. The resulting program 

worked remarkably well for tracing out the roots loci. Solutions could be started 

by specifying trial roots along the positive imaginary axis and letting the solutions 

converge to the free vibration eigenvalues. By incrementing the dynamic pressure 

and using the roots at the previous dynamic pressure point as iteration starting 

values, a specified number of branches of the complex roots loci could be simul- 

taneously traced out. Any complex valued roots had their conjugates added to the 

function deflation in the Muller routine so that only the upper half-plane of the 

symmetric roots loci was extracted. Zero frequency static divergence roots could 

also be extracted with determinant iteration. 

One point to be aware of is that small sized flutter equations (i.e., not too many 

degrees of freedom) will usually not encounter problems with determinant evaluation 

since the range of determinant values tends to be reasonable. For larger problems, 

one may find it necessary to employ scaled arithmetic in the determinant evaluation 

in order to prevent overflow or underflow during the computation. Another alterna- 

tive is to keep the size of the flutter equations small by applying modal superposition 

to Eq. (7.5). As a result of standard superposition procedures, the flutter matrix 
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Table 14 

Flutter velocities for an unswept, uniform, 
isotropic wing 

Flutter 
Solution Description Velocity 

km/hr 
Ref. [53,54] Exact Analysis 494 
Ref. [52] 25 finite-difference points 483 
State Vector Jacobi I.M., 2 intervals 486 
State Vector Jacobi I.M., 3 intervals 494 
State Vector Jacobi I.M., 4 intervals 494 

will be formed by premultiplying the matrix in Eq. (7.5) by the transpose of the 

modal matrix and postmultiplying it by the untransposed modal matrix. 

7.2 Flutter of an Isotropic Wing 

Flutter calculations using the state vector approach were verified through 

comparisons with analytical solutions presented by Goland [53] for an unswept, 

cantilevered, isotropic wing. (Corrections for Ref. [53] are given in Ref. [54].) The 

appropriate data for this problem were taken from Ref. 44. Table 14 gives a 

comparison of numerical flutter results from Eq. (7.5) with those of Goland and with 

a numerical solution of Housner and Stein 1521. The state vector solutions are based 

on Jacobi integrating matrices corresponding to two, three, and four collocation 

intervals, and unsteady aerodynamic calculations employ a rational approximation 

of the Theodorsen function due to R.T. Jones. Details on the unsteady aerodynamic 

strip theory can be found in Appendix D. 

It is readily seen that the hybrid state vector solutions are quite accurate 

and converge rapidly to the exact solution as the number of collocation intervals 

increases. Similar solutions based on Newton integrating matrices also yield highly 

accurate results that are virtually identical with the Jacobi solutions. The flutter 
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Inertia parameters for the uniform composite wing of Table 13 

1 
'13, - 0.2 
Fa 0.29 
p - 8.0 

Wr,, - 1.0 
0.03 

pRaa - 0.0065 

solutions for this particular problem depend heavily on the accuracies of the lower 

frequency coupled bending-torsion modes of free vibration. The high accuracy with 

which the flutter velocities are determined demonstrates the fact that the integrating 

matrix solutions contain precise information for these lower modes. 

7.3 Flutt+r of a Composite Wing 

Flutter solutions will now be obtained for an unswept, uniform composite wing. 

The wing geometric, aerodynamic, and structural data to be used in the flutter 

solutions can be found in Table 13 and Fig. 9 of Section 6.1. (Fig. 9 contains data 

for a single layer laminate only.) Inertia data are given in Table 15. This data 

corresponds to a wing that was aaalyzed by Housner and Stein [52]. The analysis 

to be given here, however, includes the effect of bending-twist coupling represented 

by the I& term. It is assumed that the composite layup is equivalent to a midplane 

symmetric aagle-ply laminate, for which the effective coupling decreases with an 

increasing number of layers. As in the preceding section, the unsteady aerodynamic 

loads are calculated from the modified strip theory presented in Appendix D, and 

the Theodorsen function is calculated from the R.T. Jones rational approximation. 

No compressibility corrections are applied to the unsteady aerodynamic terms. 

Plotted in Fig. 13 is the nondmensional flutter dynamic pressure parameter 

for the unswept, uniform composite wing as a function of the fiber orientation 

angle 8. The results are normalized by the flutter dynamic pressure at B = -90". 
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PRESSURE 
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FIBER ORIENTATION ANGLE, 8 (DEG) 

Fig. 13. Effect of fiber orientation on flutter dynamic pressure 
for an unswept, uniform composite wing-symmetric 
angle-ply laminate with 1, 3, 5, and 15 layers. (XREF = 
Xp--QoD)) 

Several curves are displayed corresponding to  symmetric angle-ply laminates having 

1, 3, 5, and 15 layers. The single layer equivalent laminate possesses the maximum 

amount of bending twist coupling, while the 15 layer equivalent possesses very little 

coupling and exhibits essentially quasi-isotropic behavior. It is apparent from Fig. 

13 that in the behavior, the flutter speed for the unswept 

wing follows the torsional stiffness variation, with a peak in the flutter dynamic 

pressure occurring at maximum torsional stiffness corresponding to 8 = 450. These 

nondimensional results for the 15 layer 1 closely with the 

quasi-isotropic results given in F 

of quasi-isotro 

9 of Housner and Stein [52]. 
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In contrast with the quasi-isotropic limit, the behavior of a single layer equiv- 

dent  symmetric angle-ply laminate demonstrates a limiting case solution involving 

maximum bending-twist coupling. The asymmetry of the bending-twist coupling 

term about 8 = (P is quite apparent from Fig. 13. The sharp peak and the rapid 

changes in the flutter dynamic pressure for this case are caused by the important 

participation of the coupling term in the solution. The rapid variation and the 

sharpness of the peak are quickly diminished when more layers are taken. Since 

practical composite layups tend more toward quasi-isotropic behavior, it is not an- 

ticipated that this single layer limiting case solution will necessarily be attained in 

practice. 

The flutter curves presented in Fig. 13 were obtained directly from Eq. (7.5) by 

using the previously described root tracking scheme based on determinant iteration. 

Both Jacobi and Newton integrating matrices for two and three collocation intervals 

were employed in the flutter calculations. By using the two different interval sizes, 

the convergence of the flutter solutions as a function of the discretization level 

could be checked. For the composite wing flutter problem examined here, it was 

concluded that three intervals gave sufficient convergence, as it did for the case of 

isotropic wing flutter in Section 7.2. Because of the small number of discretization 

intervals needed, both the Jacobi and Newton integrating matrix solutions gave the 

same result. It should also be noted that since solutions were obtained directly from 

Eq. (7.5), modal superposition was not employed and the question of the number of 

modes used in the analysis does not arise. For flutter problems in which much more 

discretization is needed to adequately describe the structure, modal techniques can 

be applied to keep the flutter solutions within manageable proportions. 

To obtain each flutter dynamic pressure, the complex roots loci (a* = u* + j w * )  

for that value of fiber orientation angle were traced out beginning with zero dynamic 

pressure and continuing until one of the branches had roots with positive real parts, 
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thus indicating a dynamic instability. Figs. 14 and 15 give typical examples of 

roots loci for two daerent sets of wing parameters. Fig. 14 gives the roots loci 

corresponding to the highest peak in the flutter dynamic pressure for the three 

layer laminate solution plotted in Fig. 13. This peak occurs at a fiber angle of 

8 = 10". Fig. 15 gives the roots loci for a single layer equivalent laminate when 

the mass ratio is taken to be c( = 64 and the fibers are oriented at 6 - 45". For 

both of these figures only the three lowest root branches are shown. These two 

figures are indicative of two difterent types of instability. The instability in Fig. 14 

is approached rather slowly as dynamic pressure increases, whereas the instability 

shown in Fig. 15 is approached very rapidly with a smaU change in dynamic pressure 

and involves strong coupling between two of the wing modes. 

By tracing each root branch starting with zero dynamic pressure, it was possible 

to avoid the program logic necessary to detect discontinuities in the flutter speed 

as 8 varies. Such discontinuities were encountered by Housner and Stein [52] for 

certain values of the mass ratio parameter p, but not-for p = 8, which was used in 

obtaining Fig. 13. With the implementation of such detection logic, flutter solutions 

as a function of 0 can be carried out by using the flutter dynamic pressure at an 

adjacent value of B as a starting point for the next ff utter solution. 

The current investigation did not attempt to make a complete examination 

of the instabilitiei associated with composite wings. A more thorough study of 

the instability boundary must involve simultaneous consideration of divergence 

and flutter and should include the effects of rigid body modes. As indicated by 

Weisshaar 1511, the stability boundary of cantilevered, forward swept composite 

wings will be determined for a wide range of fiber angles by the low divergence 

velocities associated with those fiber orientations. Also indicated in Ref. [SI] are 

various changes in the mode of flutter instability as the fiber orientation changes. 

The presence of these difllerent modes of instability as the wing parameters vary 
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is worthy of further investigation. It is felt that the solution methods presented 

here will provide a convenient tool for conducting further research OR instability 

phenomena of composite lifting surfaces. 
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Fig. 14. Roots loci of aeroelastic modes for a uniform composite 
wing. (Three layer laminate; p = 10; 8 = IF) 
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Fig. 15. Roots loci of aerwhtic modes for a uniform composite 
Wing. (Single layer laminate, p - 64; 6 - 450) 
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Chapter 8 

Summary and Recommendations 

THE PREVIOUS CHAPTERS describe a hybrid state vector method for solving 

the dserential equations arising in structural dynamics and aeroelasticity. The 

method proves to be very versatile and can be applied to the solution of any form 

of ordinary differential equation. 

Solutions can be obtained in a consistent fashion for any size problem by 

working with the state vector form of the differential equations. An integrating 

matrix method is used to discretize the differential equations, yielding standard 

linear matrix equations from which one obtains the desired solutions. It is also 

shown that for simple problems, the integrating matrix can be applied directly to 

other forms of the diflerential equations. 

It is demonstrated that a convenient form of the state vector equations can be 

obtained from a variational formulation of the structural equilibrium equations. The 

equations given by this formulation have properties that are useful for numerical 

calculations. For structural problems, the state vector equations can be partitioned 

corresponding to generalized force and displacement variables. By applying matrix 

partitioning techniques, the solution state vector can be reduced to the displacement 

state variables only. This reduction process can often be carried out analytically 

to yield expressions for the direct calculation of the terms in the reduced matrix 
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equations. For problems in which it might not be convenient to carry out analytical 

reductions of the equations, the calculations can be performed numerically. 

As demonstrated in Chapters 5, 6, and 7, the hybrid state vector method is 

applicable to a variety of problems and boundary conditions. Results for these 

problems indicate that high accuracy is easily achievable. By employing high 

order polynomial approximations, the integrating matrix solutions are capable of 

providing sufficient accuracy with minimal discretization. The matrix operations 

required by this solution procedure are straight forward, easily programmable, and 

allow for efficient problem solution. 

A theory of integrating matrices is presented and a calculation procedure is de- 

veloped for maximum precision integrating matrices that are based on orthogonal 

polynomials.’ Discussions are given for several types of integrating matrices and 

some of their properties. Much flexibility is available in the types of integrating 

matrices that can be derived and used for special applications. Each type of in- 

tegrating matrix has its own uniques properties that make it more or less applicable 

to a particular situation. For the problems examined in this work, the integrat- 

ing matrices based on Jacobi polynomials have proven to have good convergence 

properties and are capable of very high accuracy solutions. Newton based integrat- 

ing matrices, which aze convenient for applications requiring evenly spaced grid 

points, also provide very good accuracies. The convergence of solutions based on 

Newton matrices, however, tends to be oscillatory in character unless the number 

of grid points is somewhat larger than the minimum number of points required by 

a given order of approximating polynomial. Tabulations are presented in Appendix 

B for both Newton and Jacobi integrating matrices. 

Additional work needs to be devoted toward extending the theory of hybrid 

state vector solutions to two and three dimensional problems. It should prove 

to be convenient in the development of multidimensional integrating matrices to 



introduce the familiar concept of multidimensional shape functions. This concept 

is routinely employed in finite element analyses. For irregular shaped regions, it is 

anticipated that a transformation to a simpler domain will be useful in performing 

the integrations. That is, integrating matrices are more easily developed for these 

simpler domains. Again, this concept is very much similar to practices currently 

in use for isoparametric finite element solutions. It is also possible to extend the 

present method to two dimensional problems by applying separation of variables, 

thus allowing reduction of the partial differential equations to ordinary differential 

equations. For multidimensional problems in general, it should prove worthwhile to 

. *  

investigate the use of integration methods that are especially suited to multidimen- 

sional integration. 

Other Qpes of integrating matrices should be investigated for special types of 

problems. For instance, semi-infinite boundary value problems shouId easily yield to 

numerical solution by integrating matrix. In this connection, it would be worthwhile 

to examine the prospect of developing integrating matrices from the orthogonal 

polynomials that are normally used for quadratures on semi-infinite domains. 

Further studies are also warranted for applications of the hybrid state vector 

method to nonlinear problems. For materially nonlinear structures in particular, it 

appears that the Reissner variational formulation (written in terms of the hybrid 

state vector) may offer important advantages for numerical solution by integrating 

matrices and is deserving of a more thorough investigation. In the presence of 

nontinearities, the hybrid state vector formulation, in conjunction with integrating 

matrices, provides a very convenient method for obtaining a compact set of non- 

linear algebraic equations that describe the solution of the nonlinear problem. 

Finally, there are many questions yet to be answered concerning the flutter of 

composite wings. Some of the more important questions are mentioned in Chapter 

7. The present examination does not attempt to address all of these problems, but 
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rather forms the foundation for further parameter studies of wing flutter. Most 

certainly, the answers to some of these problem will be very useful in preliminary 

aeroelastic design. 
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Appendix A 

Weighting Matrices and Shape Functions 
for Jacobi Polynomials 

The following presents a summary of the calculation procedures for Jacobi 

integrating matrices. Jacobi integrating matrices are developed from Lagrange 

interpolating polynomials that can be written in terms of the normalized Jacobi 

polyno-mi& p!?)(z). Included in this formulation is a detailed description of the 

integration methods required to calculate the Jacobi weighting matrices. In addi- 

tion, the interpolating poIynomials are presented in the form of shape functions 

(basis functions). Discussions on shape functions can be found in Zienkiewicz {55] 

and Gallagher (561. 

e 

First, a distinction must be made between the notation in Chapter 3 and 

the notation appearing in this appendix. In Chapter 3, n denotes the number of 

subintervals in the interval of integration, with n + 1 being the total number of grid 

points on the interval. In this appendix, however, n refers to the number of grid 

points in the interior of the interval of integration (Le., excluding end points). This 

notational change prevents undesirable complication of subscripts and limits and 

allows the use of an accepted notation for Jacobi polynomials. Since the notational 

change is confined entirely to the calculations in this appendix, no confusion should 

arise. It should be noted that whenever n is used as a subscript in a polynomial, 

it denotes the degree of the polynomial; however, the degree is the same as the 

number of interior grid points. 

All of the integrations and interpolations will be written for the normalized 
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interval [-1,1], and the subscript k will designate the quadrature points on this 

interval. The quadrature points zh are fixed grid point locations that are determined 

by the zeroes of the appropriate Jacobi polyno&al. These quadrature points are the 

same as the abscissas for Lobatto integration, which can be found, for instance, on 

page 820 of Abramowitz and Stegun IN]. Appendix B lists these abscissas for each 

Jacobi integrating matrix. Note too, that a distinction will be made between the 

unnormalized Jacobi polynomials P!!”)(z) and the normalized polynomials pk1*’)( z). 

These polynomials are a specid case of the general Jacobi polynomial 

where the normalizing factor 8, is 

(a + /I + 2n + I)n! r(a + /I + n + 1) 
2a+@+lr(a + n + i)r(p + n + 1) 

- J* - 
For a - /I = 1, the normalizing factor can be reduced to 

Some more preliminaries on Jacobi polynomials are necesiary before discussing 

shape functions and integrating matrices. First, the Jacobi polynomials pfS1)(z) 

can be calculated recursively via the formula 

with 
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The recursive calculation is repeated for m =e n,n - 1, ..., Z,l,  beginning with 

rn(z) = I. By means of Eqs. (A.4-A5) one can show that 

and 

PtJl)(l) = (?I + 1). (A-7) 

Using identities listed on page 777 of Abramowitz and Stegun [MI, one also finds 

that 

and from the dBerentia1 relations given on page 783 of Ref. (401, a useful derivative 

term is expressible in the form 

From the recursion relations given in Eqs. (A.kA.5), the following series expansion 

of P",J''(z) was developed for use in integrations: 

n 
AIJ)(z) - (n + 1) 1 + c e"m2 - 1 r 3  [ m-1 

where 

(n + 1 - kXn + 2 + k) 
2k(k+1) k-1 

(A-11) 

Note that the summation on the righf-hand side of Q. (A.10) vanishes whenever 

n < 1. One final definition that's needed in the following discussion is the definition 

for the leading coefficient of an orthononnd polynomial. For the normalized Jacobi 
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polynomials with Q - /3 = 1, the leading coefficient, an (i.e., the coefficient of the 

highest order term z”) can be expressed as 

(2n + 2)! 
2”n! (n + Z)! an= 6 (A.12) 

Turning now to interpolation, it is assumed that a sufficiently smooth function 

f ( z )  can be reasonably approximated by a Lagrange interpolating poiynomial. If 

the end points of the interval [-1,1] are included in the interpolation, then an 

approximation to f l z )  can be expressed as 

where the end points of the interval are dl - -1 and d2 = 1. This particular 

form of the Lagrange interpolating polynomial is convenient for use with orthogonal 

fun et ions. 

The interpolation given by Eq. (A.13) can be equivalently written in terms of 

shape functions, U ( z ) ,  as 

(A.14) 

where 

If interpolation is to be performed for multiple points, then the left hand side of 

Eq. (A.14) becomes a column vector and the shape function terms are written in 

the form of a rectangular matrix rather than a row matrix. 

The shape functions, which provide a convenient way of expressing Eq. (A.13), 

can be simplified by applying Eqs. (A.6-A.8). As a result of this simplification, the 
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end point shape functions appear as 

and 

For internal points Z k  on the h t e d  [-l,lf the shape functions are 

(A.17) 

where the weighting function 9(z) =I a? - 1. This weighting function is the same 

as mentioned in Section 3.1. Note too, that the prime in the denominator of Eq. 
(A.18) indicates differentiation with respect to 2. To facilitate further manipulation 

of the shape functions, the superscript (1,1) will be dropped in the remainder of this 

appendix. That is, p!i?(z) and Pjl"*')(z) will now be referred to simply as p,(z) and 

Pa( 2). 

Unfortunately, E<1. (A.18) is very inconvenient for numerical calculations. The 

ChristoffeEDarboux identity, however, proves useful in reducing the interior point 

shape functions to a much more desirable form (see, for example, Krylov [39], p. 

103). By using the fact that Pn(zk) = 0 when evaluated at its zero points, zk, a 

useful form of the Christoffel-Darboux identity can be written as 

(A-19) 

If Eq. (A.19) is first multiplied through by d(z) x= z2 - 1, then some rearranging 

gives 



where 

(A.21) 

To write EQ. (A.20) in its present form,.use was made of the standard recurrence 

relation for orthonormal polynomials, which allows one to obtain the equality 

(A.22) 

By substituting EQ. (A.20) into l3q. (A.18), one finally obtains a convenient 

form for the shape functions 

where Eq. (A.3), Eq. (A.9), and Eq. (A.12) have been employed to arrive at Eq. 

(A.23). The final form of the shape functions are represented by Eq. (A.16), Eq. 

(A.17), and Eq. (A.23). With the aid of the recursion relations given by Eqs. (A.4- 

AS), the shape functions, used in conjunction with Eq. (A.141, provide a convenient 

way of numerically performing interpolations. These interpolation expressions also 

provide the foundation for calculation of the Jacobi weighting matrices. 

It is useful to note that the interpolations can be carried out in matrix notation 

after defining a matrix of shape function values. For example, if one chooses a 

number of fixed points z = zj, (i - 1,. . . , t) at which to interpolate, then the t x n 

matrix [htj,h], for the interior point shape functions, is given by 

where the t x n matrix [ B i d  is written as 

(A.24) 

(A.25) 
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The matrix product on the righthand side of Eq. (A.25) performs the same sum- 

mation as the right-hand side of &. (A.21). [Ri,,] is a t X n matrix given by 

(A.26) 

and [&p8,$] is an n x n matrix calculated as 

In addition to [J/j,$J, the following column vectors arise from evaluating the end 

point shape functions via Eqs. (A.16-A.17): 

Finally, by collecting Eqs. (A.24), (k28), and (A.29), one obtains the complete shape 

function matrix in the form 

This matrix of shape function values can now be used for function interpolation in 

the manner indicated by Eq. (A.14). 

Having obtained expressions for the interpolation of i (z) ,  the next step is to 

calculate the weighting matrices from these approximations. But first, a convenient 

notation must be agreed upon €or the subintervals over which the integrations will 

be performed. In Section 3.1, it was convenient to label subintervals by grid points. 

That is, a particular subinterval was referred to by [zi, zi+l], where the subscripts i 

and i+l designated the two consecutive grid points on that subinterval. In discussing 
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the integrations required for Jacobi weight 

simplify the notation to refer to the same 

where j denotes a particular interval rat 

The elements in a Jacobi weighting matrix can be determined by integrating 

the approximate expression for f(z) given in Eq. (A.14). These integrations, which 

will be carried out over subintervals, are written in the general form 

(A.31) 

As mentioned in Chapter 3, a maximum precision quadrature will result only if g(z) 

is orthogonal to d(z) over the total interval of integration. The total interval of 

integration here is the normalized interval [-I, 11- Since the weighting function that 

arises during interpolation is 9(z) = z2 - 1, the Jacobi polynomials are the proper 

choice for the orthogonal function. 

J J 

Equation (A.14) is now substituted into Eq. (A.31). When the shape function 

definitions in Eq. (A.16), (A.17), and (A.23) are taken into account, one can define 

the integrals 

and 

(A.32) 

(A.33) 

and finally, 

integral portion of the terms in Eqs. (A.32-A.33), it is 

(-1)"+' 
Q-j 

2(n + 1) D-j = (A.35) 
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and 

where 

and 

(A.38) 

(A.37) 

(A.38) 

With the aid of&. (A.21), it is possible to recast &. (A.34) in a similar manner to 

obtain 

where 

and 

(A.39) 

(A.40) 

The next step in cdculating the weighting matrices requires the development 

of expressions for the integrals in &. (A.37), (A%), and (A.41). Appropriate 

expressions for these integrals are derived with the help of Eqs. (AlO-A.l1), which 

will allow term by term integration. Therefore, substitution of Eq. (A.10) for Pn(z) 

in &. (A.37) yields the intepation 
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Carrying out this integration provides the result 

(A.43) 

A similar operation applied to Eq. (A.38) yields the integrals 

with the final result of the integration being 

(A.45) 

Proceeding with a similar approach for Eq. (A41) gives 

1 e 

Rf,, = (n + l ) [ r ( z 2  - l ) d z +  e & r [ ( z - -  I)*+' + 4.- l)m+']dz (A.46) 
m-1 5 

for which the integrated result is 

(A-47) 

It is important to note that os85?~ - 1 as required by Eq. (A.21); however, the 

summation appearing on the right-hand side of Q. (A.47) vanishes whenever 8 < 1. 

The Jacobi weighting matrices can now be constructed from the values for D+, 
P+j, and Cj,b. Numerical calculation of these values makes use of Eqs. (A.35-A.36) 
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and Eqs. (A.39-A.40) in conjunction with Eqs. (A.43), (k45), and (A.47). Note that 

D-j and D+j actually form column vectors with a dimension equal to the number of 

discretization subintervals. Similarly, the elements C j,, form a rectangular matrix 

with a row dimension equal to the number of discretization subintervals and a 

column dimension equal to the number of internal grid points, where the number of 

internal grid points is one less than the number of subintervals. Analogous to Eqs. 

(A.24-A.25), one finds that the matrix [Cjc]  can be computed from 

where the (n + 1) X n matrix [Bf,,] is 

(A.48) 

(A.49) 

The second matrix on the right of Eq. (14149) is the same as Eq. (k27). And finally, 

with these definitions, the Jacobi weighting matrix is constructed in the form 

where, as mentioned in Section 3.1, the first row contains only zeroes. Considering 

the definition of n in this appendix, the dimension of Wn+l is (n + 2) x (n + 2). 
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Appendix B 

Tables of Integrating Matrices 

The integrating matrix L was defined by &. (3.11) as 
L==SW,. 

This definition applies to all of the integrating matrices given in this appendix. 

Jacobi Integrating Matrices 

The following Jacobi weighting matrices are for the normalized interval [-I, I), 
and can be transformed to the interval [O,l] by multiplying by the factor 1/2. 

The coordinate values z, which denote grid points on [-1,1], are listed above the 
horizontal bar in each matrix. Equivalent grid points t on [O,l]  are given by the 
linear transformation t = 0.5(1+z). For the Jacobi weighting matrices, the subscript 
n refers to the number of discretization intervals, with the integration being exact 
for all polynomials of degree 52n - 1. 

-1.moooo .omo0O 1.mm 

.41668867 .66668%66 -.OB33333 

-.08333333 .6&866666 .41866667 

-1.OOOoooOO -.44721380 .44721360 1.OoooOOOO 

.oO0mo .oooooooo .ooo0OoO0 .omoO0 

.22060113 -37939886 - .Of3781 473 .02060113 

-.07453560 .52174919 .52174919 -.07453560 

.02060113 -.OW81473 .37939886 .22060113 
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w4 = 

-28523152 .28523152 ,76505532 1.oooOOOOO~ 

.ooooooOO .ooo0Oo0O .oooooo0O . m o o o o  
--.02974921 .01525535 -.00894356 -00328685 

.29767068 -.06326350 .03255895 -.01154547 

33494505 33494505 -.07282206 .02310851 

-.06326350 .29767068 .26394600 -.03954284 

-01525535 m.02974921 -16373565 .09135961- 

w5 = 

'-1 .OOOoooOO -35465367 .00000000 .65465367 1 .oooOOOOO 

.oooooo~o .oooooooo .00(1000 .oooooooo . m o o o a  

-.05420686 . ~ a 7 8 i ~  .39902700 -.oi~i9557 .0261 50213 

.13545686 .23948954 -.04347144 -02127165 -.00740028 

.02615028 -.08319557 .399O27OO .36687883 --.05420686 

. -.00740028 .02127165 -.04347144 23948954 .13545686 

-1.oooOoooO -.76505532 

.oooOoooo .oooooooo 

.09135961 ,16373565 

-.03954284 .26394600 

.02310851 - .07282206 

-.01154547 .03255895 

.00328685 -.00894356 

.00000000.00000000.00000000.00000000.00000000.00000000.00000000 

.a569253 .11864577 --.021S3719 .01119518 -BO697786 BO443419 -BO167654 

-.02968808 .19675645 .22824682 -.04815170 .OB13302 -.01579792 DO587650 

.01905508 -.OS982575 27028169 28076604 -.06238108 .03261326 -.01164044 

-.01184044 .03261326 -.06238108 .28076604 -27026169 -.OS982575 .01905508 

.005876W -.0157%7%2 .02813302 -.04815170 .22624682 .19675645 -.02968808 

-.00167654 40443419 -.00697786 .01119518 -.02153719 .11864577 .06569253 

w6 

(B-5) 
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w7 = 

B-l.OaOOOOOd -.87174016 -.SO170018 --.#)929022 .ZOO29922 .SO170018 .87174015 16)9000000 

.-0 .woooooO .00000000 .00000000 .ooo00000 .00000000 .00004000 .000W00a 

.04047503 .08078532 -.01628lM .0(3850816 -.00540841 .W3600?7 --.00245244 60094208 

-.02295750 . isisi4is . i 7enwi  - .omeo~s . m 6 7 a i  - .oi~35eii  .OOS~(IW~ -.ooamia 
.Ol&S127 -.04873011 31808803 .281458S7 --.OS153854 .02840036 --.01742762 R06514W 

-.0105092? S20561SO --.OSS70463 24624162 .24624152 -~05570483 .02936150 -.01050027 

.00651400 -.01742762 .02840016 --.0616S%M S145357 .21%08805 --.04873011 .01555121 

-.003M)210 .008662M - . O l W % l l  .02067231 -.03746083 .17627681 .15151413 -.03295759 

- .oooQ420S -.00245244 .00360077 --.00540841 .00%M1816 --.01628154 .OS078532 J4047503 

'-l.OOOOoM)o -.80075800 -.67718628 -.t(Wll746 .00000000 .36311746 37718828 .80075800 1.0000000d 

. ~ o o o o  .00000000 .00000000 .woo0000 .OOooooao .ooo00000 .00000000 .MH)00000 .00000000 

.03838768 .07025101 -.012Y2820 .006667S -.00427360 .00208860 -.00214812 .00146755 -.00057030 

-.01821052 .11002193 .14050210 -.02983002 .01US7357 -.01005025 .007655877 -.00516256 .0019965S 

.01277058 --.03008507 .17700011 .10134243 -.04256122 .02306286 --.01570330 .01027426 --AO303OO3 

-.OW15870 .0255Fi263 -.04830@68 .2112)4521 f1602098 -.04008886 .02736602 --.01S82355 do630252 

.00630352 -.01682355 .02736602 -.04908886 .21602008 .21134521 -.04830068 .02555283 -.OOO15870 

--.00303093 .01027426 -~01570330 .023@6286 --.04256122 .lo134243 .17700013 -A3098597 .01277058 

.00109(156 -.00516256 &Of65877 -.01096025 .01657357 --.02983002 .14050210 .11002103 -.01821052 

-.00057030 .00146755 -.00214812 .M298860 -.W427360 .00666755 -.01272820 .07025101 .03858768, 
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'-1.oooOoooO -.91953391-.73877386 -.47792495 -.165278Q6 .16527896 ' -47792495 .73877380 .Q195339 1 1 .oOOOOOOO 

.00oooOOo . k o o o o  .ooo00000 .00000000 .00000000 . M o o  .00000000 .OOoooooo .oooooOOo .00000000 

.03093030 .OS643594 -.01021815 .00535941--.00344925 .Oil243838 -.00180282 .60133952 -.oooQ3228 .a0030504 

-.01478117 .09711306 .11445424 --.02425882 .01351771 -.QoQ01930 .00647953-.00474040 .00327262 -.00127744 

.010602Q1 -.03317994 .14707011 .15961048 -AB544673 .02011031-.01349794 .00954557 -.OO647836 .00251255 

-.00700229 .02203034 -.04105330 .18070787 -18731172 -.04253008 B2416459-.015943?3 .01047691 -.00401505 

.00578828 --.01542233 .02503502 -.04471961 .10460700 .lQ48076O -.04471Q61 ,025W02 -.01543233 BO578828 

-.00401596 .01047691--.01594323 .02416459 -.04253068 .18731172 .18070787-.04165330 .02203034 -.00790229 

.W2512&6 --.00047836 .00054557 -.01349704 A3011031 -.03544673 .15061048 .14707011-.03317994 .01060291 

-.00127744 .00327262 -.00474040 .00647@53 --.00901930 .013!51771 -.02425882 .11445424 .09711306 -.01478117 

. .oQ0116504 -.00093228 .001339S2 -.00180282 .00243888 -.00344925 .005~~41-.01021815 .05643504 B3093030 
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Newton Integrating Matrices 

h 
2 w1- - 

The following weighting matrices are repeated from Ref. 1271. For the Newton 
weighting matrices, the subscript n denotes the degree of the assumed polynomial 
upon which the integrating matrix is based. The parameter h is the step size. 

*o 0 0 ... 

-0 .*. 0 1 1 

‘ 0 0 0 0 0  a.. 0- 
9 19 -5 1 0 ... 0 

-1 13 13 -1 0 ... 0 

A 0 -1 13 13 -1 ... 0 
w3 - - 

24 i 
0 ..e -1 13 13 -1 0 

0 ... 0 -1 13 13 -1 

m 0 ... 0 1 -5 19 9- 

5 8 - 1  0 

0 5 8 - 1  

5 8 - 1  0 

0 5 8 - 1  

(B.ll) 

(B.10) 
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0 0  0 0 0  

251 646 -264 106 -19 

-19 346 456 -74 11 

0 -19 346 456 -74 

0 0 0 

475 1427 -798 

-27 837 1022 

11 -93 802 

h 
w5=?i;l;i;d 

0 11 -93 

0 ... 
0 ... 
0 ... 
0 ... 

I 

0 0 

482 -173 

-258 77 
802 -93 

802 802 

11 

0 

0 

0 

0 ... a 
0 ... a 
0 ... a 
11 ... a 

-19 346 456 -74 11 a 
0 -19 346 456 -?4 11 

0 11 -74 456 346 -19 

0 -19 106 -264 646 251 

* (€3.12) 

0 

27 

-11 

11 

-93 

-93 

11 

-11 

27 

0 

0 

0 

0 

11 

802 

.-93 

77 
-173 

... 0 

... 0 

... 0 

... 0 

... 0 

802 -93 11 0 

802 802 -93 11 

-258 1022 637 -27 

482 -798 1427 475 

(B.13) 
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h 
%& - 

60480 

r 

0 0 0 0 0 0 0 0 ... a 
LOO87 06112 -46461 87504 - a 1 1  6312 -863 0 ... a 
-863 25128 46089 -16256 7200 -2088 271 0 ... a 

271 -2760 SO810 87504 -6771 160% -101 0 .... a 

r .  

0 

0 

0 

0 

0 

0 

0 

271 -2760 80810 8704 -6771 160% -101 ... a 

... si -2760 a00810 a7504 -6771 16008 -191 a 

... o -101 1608 -6771 a7504 a0810 -2760 311 

... 0 271 -2760 m810 37504 -6771 1608 -101 

... 0 211 -2088 7200 -16256 41980 2512% -863 

... 0 -863 6312 -20211 37504 -41461 (16112 10087 

(B.14) 

0 0 0 0 0 0 0 0 ... 0 

a6700 izios40 -121707 123isa --885.47 41400 -1issi itis 0 ..D 0 

-137s i n 0 0  ioia40 -44707 2mss -11547 2000 -351 0 .*e 4 

851 -4183 57627 81603 -20227 7227 -1710 101 0 ... 0 

-101 1870 -0631 68323 68323 -0531 1870 -101 0 ... 0 

0 -101 1870 -9531 W23 68323 -631 1870 -191 ... 0 
h 

130060 
wt-- 

0 ... -101 1870 -3631 68323 68323 -0531 1870 -101 0 

0 ... 0 -101 1870 -0631 68323 68323 -531 1870 -101 

0 .*. 0 101 -1719 7227 -20227 81608 57627 -4183 851 

0 ... 0 -3Sl 2000 -11647 26883 -44707 101340 47700 -1375 

. 0 ... 0 1375 -11351 41400 -88547 123133 -121707 130840 31790 

(B.15) 
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A Sample GaueLegendre Integrating Matrix 

W3 

The Gauss-Legendre integrating matrix presented here is an example of an 

integrating matrix that does not use end point nodes. Obviously, such matrices 
cannot be used for intervals where boundary conditions must be applied at the end 
points; instead, their intended use is for interior integration regions. As pointed out 
in Section 3.2, the merging process, which forms global weighting matrices from the 
summation of local weighting matrices, allows one to combine weighting matrices 
with and without endpoint nodes. 

I .* 

Gauss-Legendre integrating matrices, which are based upon Legendre polyno- 
mials, are related to Gauss-Legendre quadrature. These matrices are also a close 

relative of the Jacobi integrating matrices since Legendre polynomials prove to be 
a special case of the more general Jacobi polynomials with a = ,B = 0. In fact, the 
general calculation procedure in Appendix A for Jacdbi weighting matrices, when 

- --.57735027 .57735027 

.oooooO00 .OoOooooo .oooooooo .o0Oooooo 

.MWH)oO00 -.07735027 .5OoooOOO .oO0oooOO 

.oooOOOOO .57735027 .57735027 .ooOoooOO 
~.oooOOOOO .500oooOO -.O7735027 .OOOoooO 

adapted to Legendre polynomials, can be used for the Gauss-Legendre weighting 
matrices. Note, however, that the Gauss-Legendre matrices, because of the lack 
of end points, are rectangular rather than square. To make the Gauss-Legendre 
matrices %onform” to other matrices with end points, the first and last columns of 

the matrix axe “padded” with zeroes as shown in the example below; this padding 
allows the definition of consistent merging rules as noted in Section 3.2. 

The weighting matrix below, with two internal grid points, is for the normalized 
interval [--1,1]; it can be transformed to [O,l] by multiplying by the factor 1/2. 

Similar to the Jacobi matrices, the coordinate values z, which denote grid points 
on [--1,1], are listed above the horizontal bar in the matrix. The grid points t on 
[0,1] can be obtained with the linear transformation t = 0.5( 1 + z). The subscript 
n refers to the number of discretization intervals, with the integration being exact 
for all polynomials of degree 5% - 3. 
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Appendix C 

Composite Laminate Constitutive Equations 

The behavior of multi-ply laminated composites and composite skin box-beams 

can be predicted by developing relationships in the laminate axes between the 

applied loads and the resulting deflections. To develop such relationships, one begins 

with the stress-strain behavior of a single lamina of an orthotropic material. The 

lamina behavior is subsequently transformed from principal axes of the lamina to 

the reference axes for the multi-ply laminate. By then applying the assumptions of 

thin plate theory, expressions are developed from the properties of the constituent 

laminae relating force and moment resultants acting on the plate to midplane strains 

and plate curvatures. These expressions are the laminate constitutive equations. 

The following is intended only as a brief description of the process for obtaining 

the constitutive equations. More detailed presentations of these developments are 

given by Jones 1251 and Ashton, Halpin, and Petit [57). 

0 

Assuming a state of plane stress, the simplified stress-strain relationships for a 

lamina of orthotropic material can be written as 

where 
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and the subscript k denotes the kth layer in the laminate. The terms Qv, which 

are referred to as reduced stiffnesses, are defined in the lamina principle axes (see 

Fig. GI). 

If e is defined as the angle between the z-axis and the I-axis (see Fig. G2), 

then a transformation of both stress and strain components in Eq. ((2.1) leads to 

the following stress-strain equations for the lamina in the laminate axis system: 

where the Qij are the transformed reduced stiffnesses, which have the definitions 

A convenient form exists for calculating the transformed reduced stiffnesses in 

terms of stiffness invariants. This invariant form, which was first developed by Tsai 
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Fig. Gl. Lamha axis system (1,2,3) 

Fig. G2. Laminate axis system (2, y, z )  
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and Pagan0 [SS], is written as 

where the stiffness invariants are 

With the foregoing knowledge of the behavior of a single layer, classical lamina- 

tion theory for thin plates can now be used to determine the behavior of the 

laminate, or laminated box-beam. Classical lamination theory embodies a collec- 

tion of stress and deformation assumptions which constitute the familiar Kirchhoff 

hypothesis for plates. Under these assumptions, the strains for any point in the 

laminate can be written in terms of geometrical midplane displacements UO, WO, and 
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wo as 

Furthermore, the laminate strains given by Eq. (C.7) are equivalently expressed in 

terms of the midplane strains and plate curvatures as 

If we now define the vectors 

then, with the aid of Eq. (C.8), the kth layer stress-strain relationships in Eq. (C.3) 

can be expressed in the form 

U& - [91k€O + t ( q k l c .  (C.10) 

Force and moment resultants offer a convenient way of expressing the relation- 

ships between internal and external loads of a laminated plate. With this in mind, 

it is convenient to make use of a force resultant vector n and a moment resultant 
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vector m which appear as 

By assuming that the plate (or box-beam) has total thickness t and a number of 

layers ~ t ,  the force and moment resultants (i-e., force and moment per unit width) 

are defined by integrating the stresses in each lamina over the thickness, that is, 

(C.12) 

By substituting &. ((2.10) into Eq. (C.12) and noting that m, EO, and (c are not 

functions of -z, one obtains the force and moment resultant expressions 

and 

After carrying out the integrations, Eqs. (C.13-c.14) can be written as 

(C.13) 

(C.14) 

((7.15) 
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where 

(C.16) 

In Qs. (C.15) and (C.16), the 4j are extensional stiffnesses, the Bij are coupling 

stiffnesses, and the Dii are bending stiffnesses. For those laminates with layers 

arranged symmetrically about the geometric midplane of the plate, the B+- terms 

will be zero. 

The integrating matrix approach requires knowledge of the compliance terms 

rather than the stifFness terms. The compliance terms are obtained by simply 

inverting the (6 X 6) matrix of stiffness terms appearing in Eq. (C.15), In symbolic 

form, the composite compliance relationship can be written as 

* 

((7.17) 

In Eq- (C.17), the subscripts of the terms in the (3 ~ 3 )  submatrices will be designated 

by i, i - 1,2,3, rather than i, i - 1,2,8. 
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Appendix D 

Modified Strip Theory Aerodynamics 

The following nondimensional unsteady aerodynamic loads have evolved from 

the modified strip theory developed by Yates [SS,SO]. These Laplace transformed 

aerodynamic loads, which are valid for arbitrary motion, are made applicable to 

the Laplace domain by inclusion of either a generalized Theodorsen’s function or 

an appropriate rational approximation as discussed by Edwards [61-63]. The loads 

presented here are intended for use with the Laplace transformed flutter equations 

(cf., Eqs. (2.21) and (4.30) ), and correspond to those load terms required by Eq. 

(2.28). The nondimeosionalization of the aerodynamic loads is the same as that 

indicated for the p’s in Eq. (2.31). 

As in the theory presented by Yates, these aerodynamics employ a variable sec- 

tion lift-curve slope a&) instead of 2n, a variable section aerodynamic center u&) 

instead of -0.5 (the quarter-chord), and a variable section structural reference axis 

location a@). The Theodorsen function can be modified by a factor which accounts 

for compressibility effects on the magnitude of the lift and pitching moment. For 

more details on the modifications accompanying a particular planform and Mach 

number, see the above references by Yates. It should be noted that for incompres- 

sible flow over untapered wings having a lift-curve slope of 21t and an aerodynamic 

center at the quarter-chord, the aerodynamics given here reduce to the elementary 

strip theory used by Barmby, Cunningham, and Garrick [64]. 

The nondimensional Laplace transformed aerodynamic loads providing lift and 

pitching moment per unit span can be conveniently calculated with the aid of an 
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serodynamk influence matrix w e * ,  A). m e  terms appearing in QFD are gken by 

where 
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and 

with D being a diflerentiating matrix. (Note that the subscript r is used as a 

reference to the variable, r - $+) For moderate angles of wing aerodynamic sweep 

and large aspect ratio, the last term on the right-hand side of Eqs. (D.3-D.4) is 
negligible compared to the remaining term. 

The following definitions apply to the foregoing equations, in which X is a 

dimensionless dynamic pressure parameter and 8* is a dimensionless Laplace vari- 

able: 

V* = Vcosh 

The aerodynamic downwash point ad is calculated from 

A convenient rational approximation to the Theodorsen function, attributed to 
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R.T. Jones, is given by 

0.59 + 0.28083 + 0.01385 

9 + 0.34553 + 0.01365 
c(a) - 

As discussed in Yates [59], for higher Mach numbers M, C(3) can be empirically 

corrected for compressibility effects by scaling by a factor R(a,M), which is deter- 

mined from a ratio of the magnitudes of compressible and incompressible circulation 

fun et ions. 
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Appendix E 

Solutions for Problems with 
Concentrated Loads 

Concentrated loads present a special type of discontinuity that can be treated 

with the help of delta functions. To include the possibility of delta functions in 

the integrating matrix approach, it is first necessary to extend the developments 

of Section 3-1 for the integrating matrices of continuous integrands. Once delta 

functions have been included in the formulation of integrating matrices, the solution 

methods presented in Chapter 4 can be expanded to accommodate concentrated 

loads. 

Instead of considering a simple continuous function f(z), as was done in Section 

3.1, it is now necessary to consider a function of the form 

where p r  gives the magnitude of the delta function (Concentrated load) at the point 

z 3 2;. Taking the integral of Eq. (E.1) over the subinterval [z;, z;+l), with the delta 

function located at z;+l, yields 

By using the definitions for {3] and {/) given in Eqs. (3.5) and (3.6) and including 
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the definition of the column vector 

one can express the set of all integrals given by EQ. (E.2) as 

This result is analogous to Eq. (3.7); note, however, that the first term in ( 3 )  is 

zero only if p$ is zero. As in Section 3.1, Eq. (E.4) can be premultiplied by the 

summing matrix S to yield the integrating matrix relationship 

where the integrating matrix L is the same as defined in Eq. (3.11). Thus, from 

Eq. (E.5) it is clear that the “integrating matrix’’ for delta functions is simply the 

summing matrix S. 

The foregoing results can be applied to solving problems as discussed in Section 

4.1. Consider, for example, the discretized equations given in l3q. (4.2). After 

including the concentrated loads, the equation can be written in the form 

Applying the integrating matrices then yields 

This result compares with that of Eq. (4.3). Note that the global summing matrix S 

will be composed of diagonal blocks of dimension ( N + l ) x ( N + l ) ,  which corresponds 

to in Eq. (64). 
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If one now solves for i ,  the equivalent of Eq. (4.9) is obtained. Thus, 

After substituting Eq. (E.8) into Eq. (E.7), grouping similar terms, and then rear- 

ranging, one has the result 

where 

(E.10) 

(E.ll) 
(E.12) 

It is clear that these equations are simply an extension of Eqs. (4.106.13). 

Carrying the analysis one step further, the reduced nonhomogeneous linear 

system in Eq. (4.261, for Hm - 0, appears as 

where 

and 

T+ - -H;$~~~H;~F&. 

Similarly, the reduced eigenvalue problem can be written as 

f(TAn, + F A & )  - (l/X)1]5D - 0 .  

(E-14) 

(E.15) 

(E.16) 
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Appendix F 

Constraint Equations 

Auxiliary constraint equations can be used in specific instances to reduce the 

degrees of freedom required for a numerical solution. To carry out reductions on 

matrix equations, it is convenient to think in terms of partitioned matrices, where 

the variables to be eliminated are placed in a partition of the solution vector, and 

all matrices appearing in the matrix equation are partitioned accordingly. The 

constraint equations are then used to obtain a transformation of variables 

where y is a vector containing the original variables, y* is a vector of transformed 

variables, and U is a transformation matrix. It is assumed initially that U is a 

square matrix that possesses an inverse, but as noted below, one can make use of 

other types of transformations that are characterized by rectangular tr&sformation 

matrices. 

Consider first a partitioned system of linear equations 

Equation (F.1) can be substituted into Eq. (F.21, and the resulting matrix equation 

premultiplied by Vel. If U does in fact represent an elimination of variables, then 0 

will be transformed by this similarity transformation into a block triangular form 
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such that 

where yg contains the eliminated variables and I* = U-lt. The reduced linear 

system is obtained directly from Eq. (F.3) as 

An identical approach can be followed for the eigenvalue problem given by 

The similarity transformation in this situation yields the equations 

from which the reduced eigenvalue problem is 

For those problems for which U is a square, invertable matrix, the foregoing 

reduction process is carried out as presented. On the other hand, it is also possible 

to use a transformation that involves a rectangular transformation matrix. In this 

situation, the above procedure requires a congruence transformation rather than a 

similarity transformation. To convert the resulting eigenvalue problem to standard 

form requires the inversion of the matrix product UTU. Unless this product results in 

a diagonal matrix, or 0th ise has some special form, the best numerical approach 

makes use of singular value decomposition and the pseudoinverse. Discussions on 

this subject can be found in Strang [SS] and Atkinson 1661. 
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Appendix G 

Calculation of Transition and 
Influence Matrices 

Integrating matrices offer a convenient method for numerically calculating tran- 

sition matrix solutions of twepoint boundary problems. For structural solutions, 

the transition matrix can also be applied to the development of sti8lness influence 

matrices. In formulating eigenvalue problems, the direct integrating matrix ap- 

proach presented in Chapter 4 is to be preferred for its simplicity and numeri- 

cal efficiency. Nevertheless, it is possible to use the transition matrix concept to 

advantage h certain types of numerical calculations. A detailed description of 

transition (also known as transfer or transmission) matrix methods in structural 

mechanics is presented by Pestel and Leckie [WJ. A brief, but useful account of the 

method can also be found in Chapter 10 of McGuire and Gallagher 1201. In addition, 

the reader can refer to Chapter 7 of Boyce and DiPrima I681 for a general review 

of fundamental matrices and the role they play in the solution of linear diEerentia1 

equations. For useful applications and properties of transition matrices, one should 

consult Appendix A4 of Bryson and Ho [21J and Chapter 9 of Kailath [64. 

The calculation of a transition matrix begins with the integrated version of the 

homogeneous state vector equations. These equations can be obtained from Eq. 

(4.3) by dropping the nonhomogeneous term ii,, thus yielding 

It will be assumed that the ordering of the components of the global state vector is 
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the same as that used in the derivations presented in Section 4.1. As will be recalled, 

the global state vector is arranged such that it can be partitioned into generalized 

force and generalized displacement subsets, and the discrete set of values for a 

particular variable are grouped together. (An alternate ordering scheme that can be 

used for transition matrix derivation involves consecutively placing each local state 

vector into the global state vector. This ordering scheme, however, requires one to 

use a Godified definition of the global integrating matrix. The modified integrating 

matrix is obtained by expanding each element of L into a diagonal submatrix, with 

the element value repeated in each of the diagonal terms of the submatrix.) 

As the next step in calculating the transition matrix, choose the constant of 

integration to be equal to the local state vector at the,end point z = 0. This means 

that the global constant vector of integration can be written as 

~ F F  ~ F D  L-wo=[ BDF ~ D D  1(:3 (G.2) 

where B will be termed a selection matrix since it selects the component of the local 

state vector to be placed in each component of k. 8 consists primarily of zeroes, 

but has appropriately placed unit terms. For clarity, it is worth noting that if NS 

is the number of state variables and (N + 1) is the number of grid points, then the 

dimension of yo will be NS and the dimensions of B will be Ns(N + 1)'XNS. 

If one now combines Eq. (G.1) with Eq. (G.2) the result is 

Hji=&()=i;  

where 

H a I - L Z +  X U .  

The corresponding partitioned form of Eq. (G.3) appears as 
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In a straight forward manner, Eq. (G.5) can be solved by partitions, which yields 

where 

By definition, the transition (transfer) matrix transforms the state vector at 

one point into the state vector at another point. Considering the transition matrix 

between the state vector at z - 0 and the state vector at the ith grid point, one 

can write the general transition matrix relationship as 

At the same time, it is possible to write another expression for the local state vector 

appearing on the left-hand side of Eq. (G.8). This expression, which makes use of 

another selection matrix, r;, transforms the global state vector into the local vector 

at the ith point. The expression i$ written as 

By substituting the result for the global state vector from Q. (G.6) int0 Eq. (G.9), 

and then compmring with Eq. (G.8), one finds that the transition matrix for the ith 

grid point is given by 

(G.lO) 
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This equation, ‘in conjunction with Eq. (G.7), provides a method for calculating the 

transition matrix. 

The foregoing results for transition matrices can be applied in calculating a 

stiflness influence matrix. For the influence matrix calculation, the load terms 

multiplied by X in EQ. (G.1) are set to zero; for certain problems this can mean 

that HFD in Eqs. (G.5) and (G.7) will be zero. The strategy in developing a 

stitrness influence matrix from a transition matrix is to obtain a force-displacement 

relationship between degrees of freedom at each end of the normalized interval 

[&I]. By. definition, the matrix that relates the force degrees of freedom to the 

displacement degrees of freedom will be the influence matrix. 

By making use of Eq. (G.8), and taking into account the properties of a 

normalized transition matrix, one can write the expression 

Solving for the constant vector on the far right-hand side of &. (G.11) gives 

(G.12) 

Similar to Eq. (GA), an expression can be written for the forces at the 

endpoints. This expression appears as 

Substituting the constant vector from Eq. (G.12) into Eq. (G.13) yields 

(G.14) 
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where the stifllness influence matrix Kf is given by - 

Provided that certain conditions are met by the transition matrix, it can be 

shown that Kf is a symmetric matrix. To demonstrate this fact requires knowledge of 

the transition matrix for the adjoint system of homogeneous differential equations, 

where the adjoint equations are obtained by substituting -zT for Z in Eq. (G.1). 

The transition matrices of the original and adjoint systems share the identity 

*p 3: 1. (G.16) 

wheretaA is the transition matrix for the adjoint system. Normally, one would 

obtain (PA by solving the adjoint difllerential equations, but for symplectic systems 

(see Section 2.1) the adjoint transition matrix can be obtained directly from the 

original transition matrix through the relationship 

where 1 is as defined in Chapter 2 (see Bryson and Ho [21J, p.157). With the aid 

of this relationship, it can be shown that if the numerically calculated transition 

matrices satisfy Eq. (G.l6), then Kf - KtT - 0, which shows that K' is symmetric. 

It should be noted, however, that sample numerical calculations seem to indicate 

that the discretization level determines how accurately the numerically calculated 

transition matrices match the identity in Eq. (G.16). The satisfaction of Eq. (G.16) 

possibly might serve as an indicator of sufficient discretization, but at the present 

time this has not been verified and thus remains an object for further study. 
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A final item to be noted about transition matrix solutions is that calculations 

for nonhomogeneous linear problems can be simplified considerably if they are 

symplectic. That is, by making use of integrating matrices and by applying the 

relationship in &. (G.17), one finds that the usud variation of parameters solution 

for the state vector equations can be written in a conveniently calculable form. 
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ABSTRACT 

Theoretical and experimental results are presented fron an investiga- 

tion into the thrust of oscillating airfoils. The voluminous previous 

work is reviewed and some new conclusions are draun. First, that oscil- 

latory camber can be an important part of natural flight. Second, that 

under optimum propulsive conditions, a simple relationship between 

thrust and efficiency exists. 

The theory of Timman i s  expanded to predict the thrust of a thinr 

two-dimensional airfoil oscillating in a wind tunnel. Also, a li5ting- 

surface method is developed to model a thick wing in a wind tunnel. The 

full Bernouiii equation is used in incompressible, inviscid flou to 

accurately calculate the suctionp including the second harmonic force 

ng-edge suction of thin-airfoil theory. rrhich i s  ana ogous to the lead 

An experimental apparatus consisting of an airfoil with an internal 

force balance, which i s  pitched and plunged in a lou-speed tunnel, is 

used to measure the lift, moment and drag during oscillatory motion. 

The experimental data compares very well uith theory fur  simple pitch 

motion. Data f o r  pure plunge and combined motions are also presented. 
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Chapter I 

INTRODUCTION 

People were already flying across the Atlantic before it uas possible 

to analyze the flight of the birds which gave us our inspiration to f l y .  

NOW, with the success of the man-powered Gossamer Albatross we have 

reached the point at which we can bring together many separate thpories 

to analyze natural f 1 ight. 

Past work has included: 

1. 2-0 rigid wings in i usoidal tran verse moti n. 

2.  Uings with oscillating camber. 

3. Rigid wings in longitudinal motion. 

4. 3-0 wings in transverse motion. 

5. Effects of large amplitude motion. 

6, Boundary-layer drag analysis. 

7. teading-edge suction restraints. 

8 .  Interference between mu1 tiple wings. 

This past work is reviewed in the first chapter o f  this dissertation. 

Predicting the thrust of a uing in unsteady motion is not only a 

prerequisite for ornithopters; but also ,  as the references indicate, it 

is vital to the design o f  vertical-axis wind turbines, helicopter rotors 

in forward flight and aircraft uith slender, nonplanar wings. 
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The objectives of this research were to summarize and simplify the 

body o f  reports on oscillating wings, apply them to the case o f  an air- 

foil in a uind tunnel, and measure the actual forces experienced by such 

an airfoil. 

1.2  

In the next chapter a review of uork on the thrust o f  oscillating 

cular emphasis on two-dimensional theory. wings is presented, with part 

Chapter I 1 1  details the ca culation of the lift, moment and thrust 

for an airfoil oscillating in a uind tunnel. Both an analytic theory, 

which is exact for a thin airfoil in incompressible f l o w ,  and a numeri- 

cal computational procedure for thick wings are included. 

Chapter I V  describes the apparatus designed for measuring the aerody- 

namic forces in Stanford's low-speed uind tunnel. Results for pitch, 

plunge and combined motion are reported and compared to the developed 

theories. 

A summary and recommendations for future research are given in Chap- 

ter V. 

1.3 SUMMARY 9f $ONTRIBUTIONS 

A I  The thrust of an airfoil operating optimally belou the critical 

frequency i s  shown to have a parabolic dependency on the efficiency. 
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This behavior has been found to be true o f  wings, also, but has not yet 

been recognized in its general form. This relation makes it easy to 

estimate the optimum propulsive performance for an oscillating wing, 

8)  Nu's theory for the thrust of a 2-0 airfoil was used to investi- 

gate the effect of variable camber. A bird-like camber shape uas chosen 

and added to a rigid airfoil moving in a natural manner. In the right 

proportion, the camber increases the thrust by 50 percent while the 

efficiency remains unchanged. Moreover, the leading-edge suction uas 

drastically reduced, another advantage over the rigid airfoil. 

C) Timman's theory f o r  the lift and moment on a wing in a wind tun- 

nel uas modified to predict thrust. This was done by extracting the 

leading-edge pressure singularity from Timman's pressure distribution 

and inferring the suction from this. 

D) A thick-airfoil panel method has also been used to predict the 

drag of the airfoil in the wind tunnel. Comparisons between the predic- 

tion of these theories and the experiment are made. 

E) A 2-0 wing uas designed, constructed and instrumented to measure 

the axial and normal forces as the airfoil is pitched and plunged in 

Stanford's lou-speed wind tunnel. 

F) Measurements of the aerodynamic forces during simple pitch and 

pure plunge at three reduced frequencies are presented. The results 
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from combined pitch and plunge motion uith s i x  various pitch/plunge 

phases are also included. Excellent agreement i s  found for most casesr 

particularly simple pitch oscillations. 
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Chapter I 1  

HISTORICAL OVERVIEW 

2 . 1  J NT R 0 n U CT I 0 N 

A complete revieu of oscillating wings, like a mirage, appears to 

recede uith the coming of familiarity in the subject. There uill aluays 

be an excluded paper or overlooked book which bears some relation to 

flapping flight. Further, a proper abstract of the information in the 

2000 references collected by Fitz Patrick [ l I  uould not only be inappro- 

priate for this thesis but uould also be self-defeating by its intimi- 

dating size. The revieu given here is therefore necessarily arbitrary 

and incomplete. The papers included in thts review are, firstly, perti- 

nent to the other uork in this thesis. Secondly, they treat the funda- 

mental problems of flapping flight, and finally, they illuminate the 

troubled evolution of a technology which often appears on the verge of 

maturity. 

A relevant review of unsteady aerodynamics is given by McCroskey 1 2 1 .  

For indepth collections the reader is referred to Suimminq and Flvinq &I 

Nature 131 and Biafluiddvnemics 141. 
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2 . 2  HISTORICAL DEVELOPMENTS 

Persistent attempts at sustained flight in aircraft propelled by 

oscillating wings have been made since the early days of aviation and 

have continued to this day. In 1867, Otto Lilienthal 151 conducted 

tests on a full scale machine whose wings were made of multiple slats 

which 'feathered' on the upstroke and closed to form a solid wing on the 

downstroke, but this was much too inefficient for flight. 

Before the Wights' development of propeller theory and efficient 

propellers, the means of propulsion of an aircraft was a point of argu- 

ment. In 1904, Samuelson 161 asked 

Whicti of the two systems, exclusively coming into question 
for human flight, offers the greater probability of a future 
development? Is it the sailing-flight by screw propulsion in 
the manner of W .  Kress, Prof. S.P. Langley, W. and 0. Uright 
brothers &tc. or i s  it the bird-like flight, performed as far 
as I know, till now only by myself ... ? 

and based on his own experimental evidence, answered 

... I do not intend to dispute a possible success of the screw 
.; i 1 ing-f 1 yer. 
But I say this: the sailing flight has narrow limits; the 
rowing flight the infinite possibilities. 

Since then the "infinite possibilities'' have been investigated by an 

innumerable multitude with narrow success. 

Patrick 1 1 1  mentions some 2000 references and 500 inventions perti- 

nent to oscillating wings, including no less than tuenty model or full 

scale aircraft, some of which are illustrated in his paper. Vasil'yev 

I7,81 mentions a number of Soviet inventors uho often flew their models 

in competition culminating in All-Union contests in 1950 and 1951. A s  
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an example, Figure 1 presents the elegantly simple propulsion scheme of 

Miturich. This is a motor whose shaft is parallel to the span and which 

rotates an unbalanced mass. In reaction to this the airplane oscillates 

up and down to produce thrust. This idea uas recently again forwarded 

by Wolf [SI and Smith [ l o 1  to propel ultra-light man-carrying aircraft, 

except this time it is the pilot who is the vibrating mass! 

Figure 1: The Model of Miturich Powered by a Rotating Mass. 

The meeting of the Experimental Aircraft Association at Oshkosh is 

the gathering point for present-day inventors interested in ornithop- 

ters. Among them are P.H. Spencer of $anta Monica, who has flown gas- 

driven models. Another is J.L.G. Fitz Patrick of Staten Island Commu- 

nity College uho has designed and built several prototypes of piloted 

ornithopters. These vehicles are intended to test the unique empirical 
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theory developed by Patrick 1111. This theory is based on much personal 

observation of flying and suimming creatures, and, in fact, the patented 

1 1 2 1  flapping mechanism of the wings is a "bird-bat analog" uith the 

names o f  the parts taken from bird physiology. A physical description 

of Patrick's ornithopter is presented in Figure E .  Captive tests have 

so far met expected thrust levels, but no free flights have been made. 

The uork o f  Patrick is typical of the attempts to overcome the severe 

limitations o f  aerodynamic theory uhich has sound mathematical basis, 

limitations uhich are often violated in natural flight 1131. This 

review uill next concern itself uith the progress that orthodox aerody- 

namic theory has made in the area o f  oscillating wing propulsion. 
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2.3 THEORY TWO-DIMENSIONAL OSCILLATING SJINGS 

2.3.1 RiQid Airfoils 

Consider an airfoil which oscillates transversely in a constant free- 

stream. The flow is assumed to be describable by a velocity potential 

and to remain attached to the thin airfoil as it flows from the leading 

edge to the trailing edge where the Kutta condition is enforced. As 

shown in Figure 3, the plunge displacement of the airfoil i s  measured at 

a point a semichords behind the midchord. Let us define this displace- 

ment as the real part of hbeikt, and the pitch displacement as the real 

part of .eikt so that h and a are nondimensional amplitudes, which may 

be complex to include a phase angle. In complex notation (see Appendix 

A), the normal force and moment coefficients, as found by Theodorsen 

1141, are: 

C n  = n(ika-kzh+ak2a) + PnC{a+ikh+ik(i-a)aI (2.11 

1 

8 
Cma = h(-kzah-ik($-a)a+kz (-+atla) 

(2.2) 

Garrick 1151 in 1936 found the suction coefficient to be: 

C. = fn14C2Ca+ikh+ik(i-a)a3z-kza2 

-2ikaCla+ikh+ik(#-a)a)l. 

In terms of these coefficients, the thrust coefficient i s  

(2.3) 
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Figure 3: A i r f o i l  Reference System. 
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To p r o v i d e  a s i m p l e r  n o t a t i o n  t h a t  w i l l  a l l o w  easy comparison with 

l a t e r  r e s u l t s ,  t h e  f o r m  o f  Timman [161 i s  used. L e t :  

(2.5) 

(2.6) 

( 2 . 7 )  

where we now measure h and C m  a t  t h e  midchord,  t h a t  is, a=O. 

Comparing- (2.1-2.3) w i th  (2 .5 -2 .7 )  l eads  t o :  

Cna'= ikaC (2 .91  

v R 
Cma'= k 2  - - i k  - (1-C) 

16 4 

1 
K h = -  6 ik 2R 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The m a j o r  p o i n t  t o  n o t e  i s  t h a t  t h e  thrust i s  dependent on t h e  square 

o f  t h e  m o t i o n  ampl i tudes .  I f  t h e  r a t i o  a/h i s  k e p t  c o n s t a n t  then dou- 

b l i n g  t h e  f l a p p i n g  ampl i tude a t  f i x e d  f requency u i l l  quadrup le  t h e  
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thrust. By originating the term thrust loading, (Cto&rhz)r Wu (171 

introduces a measure o f  the thrust which is independent o f  amplitude. 

This quadratic behavior results in a mean thrust when the instantaneous 

thrust is averaged over each cycle. The average thrust i s  

(2 .14 )  

(The star indicates the conjugate.) 

The average non-dimensional power required to drive the oscillation 

is 

Me can relate the efficiency of thrust production as 

which is independent o f  amplitude and meaningful only for a positive 

thrust. 

To include the effect o f  mean angle of attack one superposes the 

sol uti on, 

to (2 .7 ) .  The suction uill then be 
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(2.18) 

where the time dependence has been included in ( 2 . 1 8 )  to indicate that a 

mean angle of attack leaves the second harmonic suction unchanged, while 

adding a mean suction. The mean drag is unaltered because the added 

mean suction is cancelled out by the mean drag component of the normal 

force. An important consequence of a mean angle of attack is the first 

harmonic term, uhich is a coupling betueen the unsteady and steady 

forces. Lift and pitching moments due to a steady angle o f  attack are 

added to the oscillatory forces due to airfoil motion. 

Garrick and others have provided values of the average thrust during 

heaving and pitching. But some o f  the interesting and necessary quanti- 

ties from a design standpoint are the amplitudes of the oscillatory 

forces. Figure 4 shows values of mean thrust and suction (Fig. 4a), 

normal force and moment amplitudes (Fig. 4b), normal force and moment 

phase angles (Fig. 4c), suction and thrust amplitudes (Fig. 4d1, second 

harmonic suction and thrust phase angles (Fig. 4e) and finally the effi- 

ciency (Fig. 4f) for an airfoil heaving 0.108 semichords and pitching 2 

degrees as mqasured at -0.30 b. The reduced frequency is 0.395. The 

horizontal axis in all the figures is the phase angle by which pitching 

leads heaving. For a wing with a 24 cm chord at a flight velocity of, 

say, 14 m/s these parameters correspond to a flapping amplitude of 1.3 
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cm a t  a frequency o f  7.5 Hz. The maximum thrust  produced i s  0.09 N per 

meter o f  span. For  the experimental uing o f  Chapter I V  t h i s  i s  only 

0.04 N. Under less than maximum condit ions the thrust  i s  much less. 
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2.3.2 f l e x i b l e  A i r f o i l s  

Wu [181 went beyond G a r r i c k  and a l l o w e d  o s c i l l a t o r y  camber. Wu uses 

t h e  a c c e l e r a t i o n  p o t e n t i a l ,  f, t o  f i n d  t h e  f o r c e s  on an a i r f o i l  undergo- 

i n g  genera l  o s c i l l a t o r y  t r a n s v e r s e  mot ion.  L e t  t h e  d isp lacement  o f  t h e  

a i r f o i l  be 

h(x , t )  = h l ( x 1  eikt. (2.191 

The F o u r i e r  expansions o f  t h e  d isp lacement  and t h e  s l o p e  are :  

(2.201 

(2.211 

where x = c o d ,  

Thus, f o r  tangent  f l o w  t h e  v e l o c i t y  o f  t h e  f l u i d  normal t o  t h e  chord  i s  

(2.221 

Nou on t h e  a i r f o i l  t h e  r e a l  and imag inary  components o f  t h e  a c c e l e r a t i o n  

p o t e n t i a l  a re :  

(2 .24 )  

(2.251 
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Relating the acceleration potential and the normalwash through the line- 

arized Bernoulli equation leads to: 

a0 = (ao + a l l  c w  - a1 (2.26) 

(2.27) 

I_. 

Integrating the pressure over the airfoil produces the normal force and 

moment : 

The leading-edge suction is 

(2 .28 )  

(2.29) 

Finally, the thrust, including the leading-edge suction, is 

The instantaneous power to drive the motion is 

I 

- 1  

(2.32) 

To calculate the efficiency, we need only the average pouer coefficient, 

which is 
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1 

CUO = -i 1 Re [ -ikh*ACp] dx 

Per fo rming  t h e  i n t e g r a t i o n  leaves  

(2.34) 

The e f f i c i e n c y  i s  a g a i n  expressed by ( 2 . 1 6 ) .  The i m p l i c a t i o n s  o f  a 

s teady  a n g l e - o f  a t t a c k  o r  camber on drag  a r e  t h e  same a s  those d iscussed 

under r i g i d  a i r f o i l s ,  Mean l i f t  and moment i s  produced o n l y  by s teady  

ang le  o f  a t t a c k  or camber. 

McCroskey [191, w h i l e  n o t  s t a t i n g  t h e  f o r c e s  e x p l i c i t l y ,  c o n t r i b u t e s  

by c l e a r l y  e x p r e s s i n g  t h e  p r e s s u r e  d i s t r i b u t i o n  on an a i r f o i l  i n  

unsteady mot ion.  

2.3.3 Exper imenta l  Val i d a t i o q  

A number o f  exper iments  on o s c i l l a t i n g  a i r f o i l s  have been r e p o r t e d  

(see t h e  b i b l i o g r a p h y  t o  Ref.  20) .  The m a j o r i t y  have been des igned t o  

measure t h e  o s c i l l a t o r y  l i f t  and moment, and o n l y  r e c e n t  exper iments  

have been devoted t o  measur ing t h e  thrust t21-311. A r e l a t i v e l y  exten-  

s i v e  s e t  o f  l i f t  and moment measurements was made by Halfman 1321. His 

r e s u l t s  i n d i c a t e  good agreement with t h e o r y  except  f o r  a decrease i n  
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amplitude at low reduced frequency typical o f  static measurements of 

lift. This discrepancy is attributed to the lack o f  thickness and 

boundary-layer effects in the model. 

The oscillatory drag of an airfoil has been measured in connection 

with the dynamic stall of helicopter blades, for example by Philippe and 

Sagner 1211. Favier et. al. 122, 231 report sketchy results for an air- 

foil at large mean angle of attack and performing oscillatory transla- 

tion at an arbitrary angle to the freestream. 

ary airfoil and a fluctuating free stream, Hien [251 measured the drag 

o f  an airfoil undergoing large amplitude pitching typical o f  a vertical 

axis wind turbine. 

Kunr 1241 used a station- 

0 

The thrust of a plunging and pitching airfoil has been measured by 

Scherer 1261 and Ubye 1271, who validated Garrick's theory in the wind 

tunnel at low reduced frequency (k<O.t) and large amplitude, Figure 5. 

Siekmann I281 and Kelly [a91 also present some data, including tests 

with oscillatory cambero for a thin plate in a uater tunnel. Archer et. 

a). I 3 0 1  and Fejtek and Nehera I311 have measured the thrust of a finite 

flapping wing. 
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The theory of oscillating wings applies directly to the foruard 

flight of birds 1331 and insects f341 .  Xt is also appropriate for the 

carangiform mode of propulsion o f  fish with lunate tails, uhich i s  char- 

acterized by large amplitude tail motion but the body forming less than 

one-half a sine waver (see Ref. 351. Under these conditions, surging i s  

minimal and the theory of Garrick o r  Wu is appropriate. In animal pro- 

pulsion it is observed that Q lags h by approximately 90 degrees, which 

tends to minimize the instantaneous angle of attack. (Lighthill 1 4 1  

finds it convenient to assume this phase angle implicitly and make 

slight adjustments by altering the pitch axis position. He slso intto- 

duces the feathering parameter 8=o./hk). At this phase angle the thrust 

loading is near minimum, but birds and fish rightly prefer to flap their 

wings and tails with this phase angle because the  efficiency is markedly 

higher in this region (Fig. 4 f ) .  In fact, it is near 95 Fercent. To 

compensate for the relatively small thrust loading. animals operate with 

large amplitudes. Further, you will note that the leading-edge suction 

is a minimum in the natural flight region (Fig. .Id). As Lighthill I361 

observes, it is doubtful that the values of suction predicted by Garrick 

or Mu are obtained. Thus, propu?sive motion depending mostly on lead- 

ing-edge suction will deviate the most from theory. 

During our study, Wu's analysis was coded to provide quantitative. 

predictions of thrust and lift. When bird flight Mas simulated by 

adding oscillatory camber, Figure 6, to an airfoil operating in the 
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EFFECT OF CAMBER 

K = 0.395 

WITHOUT WITH 
CBf.'IBER C A N E R  

CTO: 0,0377 0,0113 
h :  86,7% 85 # 3% 

0.0 
io, 010 

figure 6: Effect o f  Oscillatory Camber on the Propulsion of a Thin 
Airfoil. 
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natural flight region, it was noted that the mean thrust could be 

significantly affected. Small amounts of camber can increase the thrust 

by 50 percent while maintaining the same efficiency. Also, the leading- 

edge suction is almost eliminated, further suggesting the desirability 

of camber. Alternatively, the efficiency could be raised, but only 

slightly since it is very close to 100 percent. Additionally, it was 

recognized that oscillatory camber could be used to tailor the pressure 
. .* 

distribution of the airfoil to prevent separation under certain operat- 

ing conditions, although this has not been validated. 

2 . 3 - 5  Surse Motion 

James [371  has looked at yet another motion employed in natural 

flight - surging, the motion of an airfoil parallel to the freestream. 

While not including the interesting case o f  a pitching airfoil, he does 

show that surging and flapping increase the mean lift of an airfoil at 

constant angle of attack. Although the efficiency of thrust production 

i s  below 80 percent, this is offset by the fact that, since mean lift i s  

increased, some o f  the power calculated to produce thrust is being used 

to sustain flight. Thus, comparing efficiencies to those of Garrick or 

Wu is pessimistic, because those motions do not affect average lift. 

2.3.6 Effect of Amplittide 

As was noted in describing Garrick's theory, derived assuming small 

oscillations, the thrust is dependent on the square of the amplitude. 

The obvious question is then what happens as the oscillation grows in 
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amplitude? Chopra I381 calculated the thrust of an aspect ratio 8 uing 

oscillating uith flapping amplitudes of 2, 3, and 4 semichords and 

pitching about its trailing edge such that B(=tana/hk)=0.6. After 

replotting his figure to keep the pitchlplunge ratio, a/h, constant, ue 

produce Figure 7. This indicates that’ the thrust loading increases very 

slightly uith amplitude. 

amplitude is greatest at 

tudes. 

At large amp 

Of courser a linearly flapping uing uhere the 

the tip may shou more losses at higher ampli- 

itudes, .he flapping veloc ty begins to contribu :e 

appreciably to the dynamic pressure and wake curvature is significant; 

then the parameter kz=kh becomes important in describing the flow as 

noted by Oshima 1391. Kat2 and Weihs $401 have also studied large- 

amplitude motion. Unfortunately, they state no conclusion ws to uhether 

including large amplitude effecfs increases or decreases the quadratic 

trend. Lorell and Bennett I 4 1 1  found an analytic expression for the 

lift in large amplitude motion. Depending on the phase betueen pitch- 

ing, plunging and surging, the oscillatory lift can either be substan- 

tially increased or reduced. 
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2.3.7 Optimization 

Mu 1171 has studied the optimum motion of airfoils and slender bod- 

ies. 'for the two-dimensional rigid airfoil which is flapping and pitch- 

ing, Wu finds the motion which gives the maximum efficiency for a given 

thrust loading, Cto/vhr, Figure 8. For frequencies below, kz1.781, there 

i s  a maximum thrust loading, see Figure 9. Above this frequency, it i s  

possible to produce thrust without flapping; the thrust loading is lim- 

ited only by pitch amplitude. 

Wu concludes in Reference 17 by saying that, for the rigid airfoil in 

particular, one can approach arbitrarily close to unit efficiency as the 

thrust loading goes to zero. For the case of general motion, there is 

an infinite set of motions which will allou this. 

It is interesting that for k less than approximately 1, which is of 

greatest interest in natural flight, one can make a very simple link 

between the thrust loading and optimum efficiency. At any frequency 

below k = l ,  a plot o f  the thrust loading as a function of efficiency 

turns out be be a parabola, Figure 10. The form i s  

c to 

nh2 
(2.35) 

where (Cto/ah2)m,x is given in Figure 9. 
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P ITCH/PLUNGE 

PI  

RAD I ANS 
4 CHORD 

RAT I C 
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1 

THRUST UNAVAILABLE 
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I 18 
REDUCED FREQUENCY 

THRUST UNAVAILABLE 

RE3LICED FREQUENCY 

Figure 8: Optimal Motion of a 2-0 Airfoil for Propulsion from Wu f171. 
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OPTIMAL THRUST vs,  EFFICIENCY 

EFF I C I ENCY 
0 5  

0 
0 8 5  0 8 5  

Figure 10: Lou-Frequency Relat ionship between Ef f ic iency  and Thrust o f  
a 2-0 A i r f o i l .  
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This form can be derived starting uith Wu’s equations for the optimum 

efficiency a5 a function of reduced frequency and the minimum reduced 

frequency (kc) at which a given thrust loading is possible: 

c t o  c to 1 2h2 
k c  = tn-[1 + ;[(2 - -1ln- + - 

ahr a Y C t o  2 

(Y  is Euler‘s constant, 1.781. . . )  

So for small k: 

c to 
kc = 2ll- 

nhz 

Ue may interchange dependent and independent variables and write 

so 

(2.36) 

(2.371 

(2.38) 

(2.39) 

( 2 . 4 0 )  

(2.411 

from which the final form is apparent. Interestingly, according to Mu 

the lower bound i s  the minimum efficiency at which a given thrust can be 

produced. This type of curve appears to apply to three-dimensional 
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winss, see Ref. 42 or Ref. 43, provided the maximum loading coefficient 

i s  adjusted accordingly. Figure 10 permits a verv rapid estimation o f  

the maximum thrust available and efficiency if one knous the operating 

frequency and amplitude. 

2.3.8 Thickness and Profile Shape 

Moods f441 is one o f  the few investigators to explicitly derive the 

drag of a thick oscillating airfoil from an analytic theory. Unfortu- 

nately, he neglects all second-order quantities, thus throwing away the 

mean and second harmonic drag. He is left with onOy the added mass due 

to surging. Since his approach i s  so general, including surging as well 

as thickness, plunging and pitching, retracing h i s  steps appears as a 

promising research topic. O f  course, since he uses a potential theory, 

i t  does not include boundary-layer drag. 

No known numerical studies of unsteady drag versus profile shape have 

been done. However, many airfoil shapes found in nature have been exam- 

ined in the course o f  physiology. For examples, see References 45 and 

46. 

low Reynolds number flight and requirement for minimum weight. Only in 

some very large or fast swimming fish do we find appreciable thickness. 

This thickness may be required for reasons of strength and from the 

dependence of carangiform propulsion on leading-edge suction, for which 

a rounded leading edge which resists boundary-layer separation is neces- 

sary. 

The thin uing sections o f  birds are probably a consequence o f  their 
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2.3.9 Viscous Draq 

Kottapalli and Pierce [471 and Archer et.al. I301 have attempted to 

include the effect of profile drag in calculating the thrust. Kotta- 

palli used a finite-difference boundary-layer calculation imbedded in a 

thin-airfoil potential solution with thickness corrections. Besides 

finding that the viscous drag of an airfoil is markedly changed while 

the airfoil oscillates, they also conclude that the phase relationship 

between flapping and pitching i s  important. They also state that the 

oscillatory drag varied linearly with amplitude. 

Archer used a quasi-steady drag theory to show that linearly flapping 

wings produce no net thrust if the maximum tip flapping velocity is less 

than approximately one third the foruard flight speed. Although 

Kottapalli describes Archer's theory as inadequate, this conclusion 

would indicate that very high angular velocities are required for fast 

forward flight. 

2.3.10 Leadins-edqe Suction Restraints 

An often-mentioned restriction on the thrust of oscillating airfoils 

is leading-edge separation, or equivalently, the maximum possible lead- 

ing-edge suction. A crude estimate of this is obtained by using the 

static stall value for the airfoil. A more accurate calculation of this 

limit is facilitated by Beddoes' [SSl leading-edge velocity criterion 

f o r  dynamic stall. 

from unsteady potential flow. The peak velocity at the leading edge and 

This is a simple criterion uhich can be calculated 
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the 'idealized adverse gradient parameter' are compared against a locus 

of maximum peak velocity and pressure gradient found experimentally by 

Evans and Mort (431.  Although limited to Mach numbers below 0.3, Bed- 

does finds good agreement for the onset of dynamic stall i s  obtained 

under a uide range of conditions. The quantitative effect on drag of 

dynamic stall is of intense interest to helicopter research [21-231. 

2 .4  T H R E E - D I M E N S I O N A ~  EFFECTS 

The effects of three-dimensional aerodynamics are, for conveniencep 

grouped under three categories: Aspect Ratio, Non-uniform Motion and 

Planform Effects. 

Chopra 138,501 has done extensive work on the propulsion o f  wings 

with aspect ratios of 4 I r  6 and 8. He has found that the thrust and 

efficiency decrease, compared to two-dimensional flow, with decreasing 

aspect ratio. The difference is not extreme, and the dependence of 

these quantities on the reduced frequency and phase angle is nearly the 

same as for 2-D flow. To corroborate these conclusions, RHOIV, the very 

accurate lifting surface code of Roue et al. 1511, was obtained from the 

Boeing Commercial Airplane Company. Rectangular uings uith aspect rat- 

ios of 3, 10 and 25 uere analyzed for thrust while in pure plunging mo- 

tion. The results, presented in Figure l l ,  show that an aspect ratio 10 

wing produces at least 80 percent of the thrust of an infinite aspect- 

ratio uing. Just as important, to the experimental results in Chapter 

IY, is that the phase shift of the unsteady thrust, compared to 2-0 Val- 

uesD is less than 5 degrees for the same uing. 
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Tuck 1521 s t u d i e d  the  thrust and e f f i c i e n c y  o f  i n f i n i t e  aspec t - ra t i o ,  

p lung ing  wings with spanuise v a r i a t i o n s  i n  the  mot ion.  A s  shoun i n  F ig -  

u r e  12, t he  most e f f i c i e n t  mode o f  p r o p u l s i o n  f o r  a p lung ing  wing has a 

cons tan t  ampl i tude a long the  span. Th is  would i n d i c a t e  t h a t  t he  caran- 

g i f o r m  mot ion  o f  a f i s h  t a i l  has an i nhe ren t  advantage over the  l i n e a r  

f l a p p i n g  o f  a b i r d ' s  u ing.  This f a c t  a l s o  tends t o  r u l e  o u t  p r o p u l s i o n  

by e x c i t i n g  any o f  t he  h ighe r  e l a s t i c  modes o f  a u ing .  

Chopra and Kambe 1531 and Bennett  [541  have analyzed wings o f  d i f f e r -  

e n t  p lanforms i n  an at tempt  t o  f i n d  a p r e f e r r e d  shape. Chopra was 

i n t e r e s t e d  i n  constant -ampl i tude f l a p p i n g  and p i t c h i n g ,  i .e .  carang i fo rm 

mot ionr  w h i l e  Bennett  looked a t  l i n e a r  v a r i a t i o n s  o f  ampl i tude ( b i r d s ) .  

Chopra f i n d s  t h a t  smal l  amounts of sweepback inc rease the  e f f i c i e n c y  and 

decrease the  dependence upon leading-edge suc t i on .  Untapered wings can 

a l s o  produce more thrust a t  a g i ven  frequency. Bennett  found t h a t  

e l l i p t i c  p lanforms a re  p r e f e r r e d  f o r  b i r d  f l i g h t ,  a l though t h i s  conclu-  

s i o n  has been m o d i f i e d  somewhat by Jones t431. Lan I551 f i n d s  t h a t  the  

e f f i c i e n c y  o f  a rec tangu la r  p lan form i s  much more s e n s i t i v e  t o  phase 

v a r i a t i o n s  than a suept wing. 

Jones [ 4 3 1  has found the  optimum load ing  f o r  a l i n e a r l y  f l a p p i n g  

wing. The c i r c u l a t i o n  as 

r = w i  J-' + 
n 4 [  

a f u n c t i o n  o f  span d is tance,  2, i s :  

(2 .42 )  
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where s is the semispan and W i  is a constant of proportionality between 

the downwash, u D  and the span (uwiZ). This loading i s  shown to be bet- 

ter than an elliptic loading in minimizing the drag for a specified wing 

root bending moment. Jones' result is obtained by employing a lifting 

line, or vortex, theory without regard to the mechanics of the wing mo- 

tion. Several other investigators have successfully used this approach 

142,  56, 571. 

Jones concludes that for a linearly flapping uing, the downwash 

should vary linearly along the span. More generally* "minimum energy 

loss (maximum efficiency) occurs when the wake moves so as to satisfy 

the boundary condition of an impermeable surface having the shape of the 

wing trace and executing a similar motion.'' Maximum efficiency also 

corresponds to constant efficiency along the span. 

2 .5  INTERFERENCE 

So far we have discussed only isolated oscillating airfoils. Sparen- 

burg and Wiersma I581 and Bosch I 5 9 1  have examined the thrust o f  tandem 

2-D airfoils. Bosch calculates the thrust efficiency for various values 

of the spacing between the airfoils and the operating frequency. He 

gives calculations for only one of the wings oscillating. The most 

interesting caser Figure 13, involves the stationary airfoil with its 

leading edge one chord length behind the trailing edge of the oscillat- 

ing airfoil. Bosch's results show that the efficiency can remain very 

close to 100 percent for all frequencies. This is possible because the 
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r e a r  s t a t i o n a r y  a i r f o i l  uses the  wake energy expended by the  upstream 

o s c i l l a t i n g  a i r f o i l  t o  produce thrust i n  a manner s i m i l a r  t o  t h a t  

decr ibed by Mu 1601. 

Lan [ 551, us ing  a unique "quasi-vortex l a t t i c e  method", surpasses 

Bosch by i n v e s t i g a t i n g  f i n i t e  tandem wings wi th bo th  wings moving. He 

f i n d s  t h a t ,  u n l i k e  an i s o l a t e d  a i r f o i l ,  "maximum t h r u s t  can be generated 

with maximum e f f i c i e n c y  i f  the h indu ing  f l a p s  i n  advance o f  t he  fo rewing  

by 135 t o  180 degrees", wi th a gap between the  wings o f  one-hal f  chord. 

This i s  one exp lana t ion  f o r  the  tandem arrangement o f  wings on many 

insec ts ,  most no tab ly  the  dragonf ly .  
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Chapter I 1 1  

CALCULATION OF AERODYNAHIC FORCES ON AN AIRFOIL 
OSCILLATING IN A WIND TUNNEL 

3.1 A N A L Y T I C  TH1N-AIRFOIL T H E O R Y  

3.1 1 Normal F o r c e  Moment 

Timman I161 has determined exactly the effect o f  the wind tunnel 

walls on a thin airfoil oscillating infinitesimally. The reader may 

find his paper difficult to follow, in uhich case the theses by Rock 

I 6 1 1  and especially Stoltr I G l l  are recommended as sources of further 

detail. Timman maps the region in the complex z-plane which i s  bounded 

by the airfoil and the uind-tunnel walls into a rectangle in the g-plane 

through the implicit conformal transformation 

uhere : 

z = x + i y  (3.2) 

(3 .3)  
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sb 
k*  = tanh- 

2H 
(3 .4 )  

K i s  t h e  complete e l l i p t i c  i n t e g r a l  

o f  t h e  f i r s t  k i n d  o f  modulus k*. 

c n  i s  t h e  Jacobian e l l i p t i c  f u n c t i o n .  

This t r a n s f o r m a t i o n ,  i l l u s t r a t e d  i n  Figure"*14, reduces t h e  problem t o  

one u h i c h  he can s o l v e  f o r  t h e  d i s t u r b a n c e  v e l o c i t y  p o t e n t i a l  s u b j e c t  t o  

t h e  boundary c o n d i t i o n  

The normalwash, v,(x>, i s  a known f u n c t i o n  d e r i v e d  f rom t h e  m o t i o n  o f  

t h e  a i r f o i l .  

From t h e  p o t e n t i a l ,  t h e  p r e s s u r e  d i s t r i b u t i o n  round t h e  a i r f o i l ,  

found t h r o u g h  t h e  B e r n o u l l i  equat ion ,  i s  

3 8ao ik l+qn  

n n=l  n I-qn 
+ - l ( a n  + -Rn)-sin(n3) 

where : 

(3.6) 

(3.7) 
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K' i s  the complete e l l i p t i c  in tegra l  

o f  the f i r s t  k ind o f  modulus k'. 

k'= jt-k' 

f 

an = v,(+)cosn+d? s 0 

f 
2K3 

v s i  n (n3) sn [T] d3 

0 

Z ( c )  i s  Jacobi's Ze ta  function 

C c  i s  the Theodorsen function i n  the wind tunnel.  

I n  pure plunge: 

a0 = i k  2K 

a+ = 0 

(3.8) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

C-46 



In pure pitch about the midchord: 

a0 = 0 (3.11)) 

H a2 

b K2k* 
a1 = ik 4-- s3 (3 .19)  

(3.20) 

(3.21) 
n=U,1,2... 

(3.22) 

(3,231 

Finally, the l i f t  and moment about midchord may be found by integra- 

ting the pressure distribution over the airfoil. FOP the simple plunge 

and pitch motion 0.f a rigid airfoil, the results are: 

0 

64 H H 

w b 
cnh = -k2--[;] qst  -+ i k 1 6  - &G'sl 

where : 

(3 .24)  

(3 .25 )  

(3.26) 

(3.27) 

(3.28) 
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Qo l+q2" 
s3 = I 7nq" - 

n=l 1-qZ" 

(3.29) 

(3.30) 

(3.32) 

To compare w i th  Garr ick 's  f r e e - a i r  r e s u l t s ,  the  f o l l o w i n g  s u b s t i t u -  

t i o n s  are  made: 

s3' = s3/q (3.33) 

8H 
A = - & .  

nb 
(3.35) 

I t  should be noted t h a t  these neu paramters all approach 1 as the tunnel  

h e i g h t  becomes i n f i n i t e .  The aerodynamic d e r i v a t i v e s  can then be w r i t -  

t e n  : 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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When comparing (3.36-3.39) t o  (2.8-2.11) i t  i s  easy t o  see t h a t  i n  

f r e e  a i r  (3.36-3.39) r e v e r t  t o  (2.8-2.111, because a l l  t h e  e x t r a  symbols 

t e n d  toward  1 w h i l e  C'  becomes C a s  t h e  t u n n e l  h e i g h t  inc reases .  The 

v a l u e s  o f  s e r i e s  S I  t h r o u g h  s6 a r e  t a b u l a t e d  i n  Tab le  1 f o r  t h e  e x p e r i -  

mental  h e i g h t  t o  c h o r d  r a t i o ,  H/b, o f  2. 

T A B L E  1 

S e r i e s  Values for H/b = 2 

SI  : 1,148 

sa : 1.153 

~ 3 '  : 1.141 

s g '  : 1.187 

I n  t h e  wind t u n n e l  t h e  branch c u t  o f  t h e  Theodorsen f u n c t i o n  d i s i n t e -  

g r a t e s  i n t o  a s e t  o f  p o l e s  and z e r o s  on t h e  n e g a t i v e  real a x i s .  The 

d e n s i t y  o f  t h e  s i n g u l a r i t i e s  becomes more sparse  as t h e  t u n n e l  h e i g h t  i s  

decreased. For  small r a t i o s  o f  H/b, t h e  r a t i o n a l  approx imat ion  o f  Rock 

[611  i s  accura te .  I n  p a r t i c u l a r ,  f o r  H/b=2, 

i k  + 0.538 

2 i k  + 0.538 
C' t ik)  = (3.40) 
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3.1.2 $eadins-edse S-uctioq 

The leading-edge suction in the wind tunnel, as in free air, is due 

to the presence of a singular pressure at the nose. Bearing this in 

mind, Timman's equation for the pressure is written 

Now recall, from Reference 63, 

Also, from Timman's transformation, 

where use has been made of (4.6.22) f Referen 64. 

2H f 1-cnydnt 
lim [ [l - -tanh-l[-L$J ] 
4-2K vb sn 4 

Let 4'=2K-(, then in the limit as x + -1 (('+ 0 ) :  

It foll 

(3.41) 

(3.42) 

(3.431 

us th t 

(3.44) 

(3.45) 

(3.46) 

(3.47) 
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1 - *cnydnf = 2 . 
Then 

which, t a k i n g  i n t o  account the behavior  o f  tanh ' l ,  i s  

S u b s t i t u t i n g  t h e  parameters, 

1 b = [%I, a 

2u 
o-, 
n 

(3.48) 

(3.49) 

(3.50) 

(3 .52 )  

(3.53) 

(where, again, b and t go t o  u n i t y . a s  t h e  tunnel  h e i g h t  becomes i n f i -  

n i t e ) ,  a l l ows  the  s u c t i o n  t o  be p u t  i n  Timman's form u i t h :  

1 
&h = - i k  2n C'fie6 

J;ln 
(3.54) 

(3.55) 

The s i m i l a r i t y  u i t h  (2.12) and (2.13) i s  apparent.  Equat ions (3.54) and 

(3.55) are b e l i e v e d  t o  be o r i g i n a l  u i t h  the  au thor .  
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Since i n  steady, p o t e n t i a l  f low the  drag i s  zero, t he  leading-edge 

s u c t i o n  must equal t he  normal f o r c e  m u l t i p l i e d  by the  angle o f  a t t a c k .  

This leads t o  the  r e l a t i o n  

K2k* 

Ttz 
- = &is1 

o r  

K2k* 
S t  = - 

11ZJ;;’ 
(3.57) 

which i s  a c losed form f o r  s l .  One consequence o f  t h i s  r e l a t i o n ,  (which 

the  author  has proved t o  be t r u e  t o  0(qto)  by expanding each s ide) ,  i s  

t h a t  Rock’s parameter, R, i s  then e x a c t l y  u n i t y  and many o f  h i s  and T i m -  

man‘s equat ions  s i m p l i f y  t o  those presented here.  

The remarks about the  e f f e c t s  o f  mean angle o f  a t t a c k  on an a i r f o i l  

i n  f r e e  a i r  a re  a l s o  a p p l i c a b l e  t o  the  a i r f a i l  i n  the  wind tunnel  i f  t h e  

s u b s t i t u t i o n  

i s  made. 

(3.58) 

I t  u i l l  be seen i n  Chapter I V ,  uhen the  t h e o r i e s  a r e  compared t o  

experiment, t h a t  t he  tunnel  w a l l s  inc rease b o t h  the  normal f o r c e  and the  

suc t ion .  
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3.2 NUMERICAL PANEL METHOD 

The panel method used here f o r  computing the aerodynamic coefficients 

is based on the Green’s function method of deriving the governing equa- 

tion. Morino I651 has developed one such formulation capable of han- 

dling finite wings in compressible flou. However, in order to compute 

accurately the suction of an airfoil in a wind tunnel, a more suitable 

formulation is appropriate. 

In using the Green‘s function method, one begins uith the problem 

statement i n  terms of the perturbation velocity potential# 

p a  i s  some point in the f l o u ,  A 

rS is a point on the boundwy, S 

Vb is the velocity of the boundary 

A i s  the normal on the boundary directed into the flow. 

NOW, Green’s Identity is f 6 S l :  

A 
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where G i s  a well-behaved func t i on .  I n  p a r t i c u l a r ,  l e t  i t  be a Green's 

func t ion ,  t h a t  i s ,  a s o l u t i o n  o f :  

V2G( r , r ' )  = 6 ( l r - r 0 1 1  E d e l t a  f u n c t i o n  (3.62) 

We have cons iderab le  l a t i t u d e  i n  choos'ing G ( r , r ' ) ,  and a g rea t  s i m p l i f i -  

c a t i o n  would be p o s s i b l e  i f  we cou ld  f i n d  G such t h a t  i t s  normal de r i va -  

t i v e  on t h e  boundary i s  zere. However, th is  i s  n o t  e a s i l y  done. 

Instead,  we choose the  s imple form 

Then (3.61) t ransforms i n t o  

(3.63) 

(3.64) 

We now l e t  r' approach the  su r face  p o i n t  P s i :  

Th is  i s  the  govern ing equat ion  r e l a t i n g  the  p o t e n t i a l  on the  su r face  

d(r,) t o  the  boundary c o n d i t i o n  on the  sur face,  d41bn. I t  may be no ted  

t h a t  blnr2/bn i s  the  p o t e n t i a l  o f  a 2-0 doub le t  o r i e n t e d  a long the  sur- 

face normal, w h i l e  'In rz i s  the  p o t e n t i a l  o f  a 2-0 source. Thus, the  

p e r t u r b a t i o n  f l o w  a r i s e s  f rom a d i s t r i b u t i o n  o f  sources and doub le ts  on 

the  boundary sur face.  

f o l l o w i n g  observat ions.  

Before proceeding u i t h  the  s o l u t i o n  ue make the  
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First, we may divide the general problem into two, which may be 

called the steady and unsteady solutions. In either case, the field 

equation is the samer brit for steady flow the boundary condition is 

While for unsteady f l o u  it i s  

(3.66) 

where 

The steady and unsteady potentials may be found independently, but, as 

will be shown later, the pressures and therefore forces on the airfoil 

are dependent on the coupled solution. 

Second, in dealing with the unsteady solution the possibility that 

the influence coefficients change as a result o f  the changing geometry 

is ignored, that is, the motion o f  the airfoil is assumed small. Then 

the unsteady potential for oscillatory motion is linearly dependent on 

the amplitude of  oscillation, and the aerodynamic derivatives may be 

calculated by replacing the doublets and sources with their derivatives. 

For example, the derivative source strength in pure pitch i s  

(3.69) 
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from which the derivative pressures and forces are found. It uill be 

shown later that these forces are not strictly oscillatory of the same 

frequency as the motion, but have a significant second harmonic analo- 

gous to the leading-edge suction of thin-airfoil theory. 

To solve the governing equation numerically, one assumes the distrib- 

ution of the doublet strength is described by an equation uith unknoun 

coefficients and satisfies the governing equation at as many collocation 

points as there are unknown coefficients. In this case we assume that, 

in the neighborhood of the point rrO, the distributions can be described 

by the first three terms of the Taylor series: 

(3.70) 

u = s(rs) - s(r,o). (3.72) 

Thus, quadratic variations of the strengths are assumed. Summing over 

all the panels, S j ,  implies 

(3.73) 

The position of the collocation points are chosen to be at the center 

of the panel and a distance uc on either side o f  the center. The three 
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collocation points provide three equations for determining the unknown 

potential coefficients. When the 'doublet' integrals, D, and 'source' 

integrals, S, are evaluated, this may be put into matrix form: 

(3 .74)  

3.2.1 birfoil Geometry 

To evaluate each element it is necessary to know the geometry of each 

panel. It shou 

try and assumed 

effort invested 

airf oi 1 by stra 

which will have 

d be noted that a certain consistency betueen the geome- 

singularity distribution is desired, for an unbalanced 

in either is uasted. For example, replacing a smooth 

ght line segments will produce a pressure distribution 

singularities at each sharp corner. Here each panel is 

assumed to be an arc of a circle uith the various parameters shown in 

Figure 15. As the airfoil i s  divided into more panels, the discontinu- 

ity in slope at each boundary tends quickly to zero. For a practical 
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geometryr 32 panels, one can see in Figure 16 that the approximate 

representation is indistinguishable from the real airfoil. The only 

deviation is at the trailing edge, which has been sharpened from the 

finite thickness edge of the real profile. Assuming circular arc panels 

leads t o  the simple relations: 

u = OR (3.76) 

So the doublet integral is of the form 

bln rf 

dn 
D i j "  = a n  dS 

s j  

uhere 

R' = R/Rq 

The source integral is 

(3.77) 

(3.78) 

un In r2 dS = (6RIn ln(R2+R~2-2RR~cos(B+6)) Rd6 (3.791 s I S j j "  = 
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Figure 15: Geometry of Cireular-Arc Panel. 

- NACA 0015 
APPROXIMATION -- 

f i g u r e  16: Approximate Representation of NACA 0015 Profile. 
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3.2.2 Computation of Coefficients 

The computation of each of the doublet and source influence coeffi- 

cients is dependent upon the juxtaposition of the collocation points 

with respect to the panel and the panel geometry. Firstly, i f  the panel 

subtends less than 0.02 radian then it is treated as being flat, in 

which case the integrals are greatly simplified. I f  the psne18s curva- 

ture must be included then either a close field ([SI < 312 Y )  o r  a f a r  

field computation i s  done. The close field computation i s  necessary to 

include properly the singularity in the integrand as the collocation 

point approaches a panel end. Finally, two more pathological cases may 

arise. One i s  sinl3=0, the other is R' = 0. The full derivat on of each 

case will not be given here, but some of the details will now be 

sketched. 

3.2.2.1 Doublet Integral 

The doublet integral for n=O can be evaluated in closed form (Ref. 

67, Eq. 342) as 

uhere 

(3.80) 

a = R8 + 1lR' 

b = 2 sins 
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c = -2 COSB . ( 3 . 8 3 )  

The choice of  sign in ( 3 . 8 0 )  is dependent on the sign of (Rr-l/Rr). For 

the higher integrals the far field approximation, 

sine 8 

cose = 1 - is2 

is used. While for the near field we use 

(3 .84)  

(3.85) 

( 3 . 8 6 )  

t 3 . 8 7 )  

'The integrals are then evaluated using Eq. 2.175 of Reference 68. 

3.2.2.2 Source Coefficients 

The source integral i s  f i r s t  partiatly integrated 

7 
PRR,sin(B+B) 

de 
n+l R2+R~2-2RR~cos(B+8) 

-7 

The same approximations to the integral in ( 3 . 8 8 )  are then used as uere 

applied to the doublet integral. 
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3.2.3 Source StrQnQthS 

3.2.3.1 Steady Flow 

From the boundary condition, 

Expanding h about O=O,  one obtains 

uhere 

This leads to 

no x 

2R2 
#nf = -. 

(3.89) 

(3 .90 )  

(3.9?) 

(3.92) 

(3.93) 

(3.941 

(3.95) 

(3.96) 
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3.2.3.2 Unsteady f l o w  

The unsteady c o n d i t i o n  is 

(3.971 

which ignores  second order  v a r i a t i o n s  i n  t h e  normal. f o r  a r i g i d  a i r -  

foil p lung ing  with v e l o c i t y  h and p i t c h i n g  with angular v e l o c i t y  -a 

about midchord, 

(3,991 

where the  symbol, i s  used f o r  t h e  vec to r  c ross  product .  Le t :  

This leads t o  

(3.100) 

(3 .101)  

(3.102) 

1 .  
+ -I hno y+a(no yxc-no xyc) 1 (8R) 

2R2 

C-63 



From which the va lues o f  t he  unsteady source s t r e n g t h s  a re  apparent. 

No t i ce  t h a t ,  f o r  steady and unsteady f low, t h e  boundary c o n d i t i o n  f o l -  

lows a c y c l i c  pa t te rn ,  

(3.103) 

3.2.4 && C o n t r i b u t i o n  

Since we a r e  dea l i ng  wi th a l i f t i n g  problem i t  i s  necessary t o  

i nc lude  a wake. f o r  steady f l o w  t h i s  i s  s imple,  i f  we f i r s t  make the  

assumption t h a t  t h e  wake w i l l  l i e  a long a s t r a i g h t  l i n e  p a r a l l e l  t o  the  

x ax i s .  The wake i n  r e a l i t y  leaves t h e  t r a i l i n g  edge a long a l i n e  

u i t h i n  the  angle formed by the  upper and lower sur faces.  However, t he  

assumption i s  s t i l l  usable.  The K u t t a  c o n d i t i o n  i s  en forced i m p l i c i t l y  

when we des ignate the  t r a i l i n g  edge as t h e  p o i n t  f r o m  which the wake 

emanates. The steady wake has a cons tan t  s t r e n g t h  equal t o  t h e  d i f f e r -  

ence between the  p o t e n t i a l s  on the upper and lower sur face.  

The i n f l u e n c e  o f  t he  steady wake i s  then t h e  same as a constant -  

s t rength ,  f l a t  panel .  

For an o s c i l l a t i n g  a i r f o i l  the  s t r e n g t h  o f  t he  uake i s  assumed t o  be 

s inuso ida l  i n  t ime and w i t h  d is tance downstream, t h a t  is, 

(3.105) 
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The d o u b l e t  i n f l u e n c e  o f  t h e  uake a t  t = O  i s  then 

- ik(x-x+,Db bln(r,-rsi I f  
W ;  = e dx . I bn 

wake 

Again we assume t h e  wake i s  p a r a l l e l  t o  t h e  x a x i s ,  so t h a t  

L e t  king 

imp1 i e s  

00 - i k x '  
i k5x 

dx'. s x:2+5y2 
W i  = 2 hy e 

5x 

(3.106) 

(3.107) 

(3.108) 

(3 .109 )  

(3 .110 )  

(3.111) 

(3.112) 

To e v a l u a t e  t h e  i n t e g r a l  ue remove t h e  p o s s i b l e  s i n g u l a r i t i e s ;  

00 - i k x '  00 - i k x '  5x 
1- ikx '  

x'2+5y2 
dx' - 1 dx' I 5x x:2+5yf s 0 x:2+5y2 0 

dx' = 

(3.113) 
5 x  

(coskx'-l)-ik(sinkxO-kx'l 
dxO. - I  x'2.+5y2 

0 
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The first two integrals are evaluated to yield 

ikdx Oy 
W i  = e -e 

IAY I 

+ i2sinhklhyl C + lnkldyl + 2 1 
j = 2 , 2  (XIQy')jl j j  

Ax Ax2+Ay2 

[ 
00 ( klbyllj - i4coshklAylz - 2tan-t - + iklAy In 

j = l r 2  j j !  b y  I Ay2 

OX 
(coskxO-l)-i(sinkxO-kx') 

dx '1 
- 2lAYIl x02+Ay2 

0 

(3.114) 

where C = 0.S77215 ... . The remaining integral i s  evaluated numerically 

to calculate the wake influence. 

3.2.5 Pressures 

Since the value of the drag in steady flou depends upon the pressure 

near the stagnation points, the complete Bernoulli equation i s  used. 

That i s ,  

This i s  manipulated to express the pressure coefficient, 

(3.115) 

(3.116) 
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Now, 

(3.117) 

(3.118) 

(3.119) 

so. 

(3.120) 

I n  sinusoidal motion,  

and 

Then, f o r  a p o i n t  on the a i r f o i l  surface, 

and 

(3 .121)  

(3 .122 )  

(3.123) 

(3.124) 
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(3.125) 

This form shows the steady-flow pressure, the first harmonic pressure 

including the coupling between the steady and unsteady flous, and the 

second harmonic pressure. For a thin airfoil, the second harmonic pres- 

sure is equal on top and bottom surfaces, and no second harmonic force 

results excepj that due to the singular pressure at the leading edge. 

However, in calculating the drag of a thick wing, the second harmonic 

pressure does not integrate to zero. I n  fact, it i s  solely responsible 

for the thrust of an airfoil in pure plunge oscillation. It should be 

noted that a second harmonic pressure also arises from a second harmonic 

variation in the potential, which is ignored in (3 .97) .  

To actually calculate the pressure we urite 

a4 ass 

an aa 
Pd = - A + -  0 (3.126) 

uhere A and u are the normal and tangential directions, respectively. 

The normal derivative is knoun from the boundary condition, whereas from 

the Taylor’s expansion 

(3.1271 
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Since t h e  d o u b l e t  s t r e n g t h  was assumed t o  be q u a d r a t i c ,  t h e  p r e s s u r e  

d i s t r i b u t i o n  c o n s i s t e n t  with t h a t  d i s t r i b u t i o n  i s  l i n e a r .  By u s i n g  t h e  

p o t e n t i a l  d i s t r i b u t i o n  i n  a d j a c e n t  panels ,  o t h e r  approx imat ions  t o  t h e  

p r e s s u r e  d i s t r i b u t i o n  can be made. 

The l i f t ,  moment and d r a g  a r e  found by i n t e g r a t i n g  t h e  p r e s s u r e  over  

each panel ,  i n c l u d i n g  t h e  c u r v a t u r e  o f  t h e  pane l .  

BY way o f  demonst ra t ing  t h e  accuracy o f  t h e  developed program, 

F i g u r e  17 p r e s e n t s  t h e  convergence of  t h e  s teady  drag t o u a r d s  z e r o  as 

t h e  number o f  p a n e l s  i s  inc reased.  F i g u r e  18 p r e s e n t s  t h e  o s c i l l a t o r y  

l i f t  a m p l i t u d e  and phase i n  pure  p lunge v e r s u s  reduced f requency.  

F i g u r e  19 shows t h e  o s c i l l a t o r y  s u c t i o n  and phase. The ampl i tude com- 

p a r i s o n  with th in  a i r f o i l  t h e o r y  shows t h e  expected i n c r e a s e  due t o  

t h i c k n e s s ,  w h i l e  t h e  phase i s  o n l y  s l i g h t l y  changed. These r e s u l t s  u e r e  

o b t a i n e d  w i th  o n l y  I8  p a n e l s  on t h e  a i r f o i l .  With t h i s  minimal pane l -  

ing,  a 3 second run t i m e  i s  achieved on Stan ford ’s  IBM 3033, u h i c h  means 

t h a t  c o s t s  can be k e p t  below $ 1  a run. 
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Figure 18: Oscillatory Lift Predicted by Panel Method. 
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c-7 2 



3.2.6 Viscous Effects 

Viscous effects can be included in the panel method by calculating 

the characteristics of the boundary-layer surrounding the airfoil. This 

has been done before in steady flow 1691 and unsteady flow (cf. 701. 

This approach is most successful when the boundary-layer calculations 

include unsteady terms and the external flow properties are dependent 

upon the boundary layer charateristics, that i s ,  the two calculations 

are coupled. 

Boundary-layer drag can be divided into two constituents. The first 

is the skin friction on the airfoil proportional to the viscosity and 

the velocity gradient at the surface. The second is the pressure drag 
a 

which arises because the drag component of the integrated pressure is no 

longer zero. The thickness of the boundary-layer modifies the profile 

shape and decreases the pressures on the aft portion of the airfoil. In 

steady flow over unstalled airfoils, the ratio of pressure drag to total 

boundary-layer drag is approximately the thickness to chord ratio of the 

profile (711. I f  the potential and boundary-layer flows are not cou- 

pled, only an approximation to the skin friction can be obtained. This 

is the case uith the results of Kottapalli and Pierce I471. 

The finite difference scheme of Dwyer (721 has been selected for 

boundary-layer calculations by Kottapalli and Pierce 1471 and McCroskey 

[701. McCroskey gives a good description of the solution for an 
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oscillating airfoil using this scheme, provided the velocities due to 

angle of attack, camber and thickness are given. For an airfoil with a 

turbulent boundary layer, the computation took u 

IBM 360/67. 

In order to reduce costs, the use of an integral boundary-layer 

method was pursued. For the present research, a steady flow, integral 

method for boundary-layer calculations was available through the NASA 

.. 

Ames Research Center. This was the code developed by McNally 1731 that 

calculates laminar characteristics using the approach of Cohen and Resh- 

otko [ 7 4 1  and turbulent characteristics based on Sasnran and Cresci 1751. 

Transition can be calculated or specified to occur at one spot. 

The envisioned procedure in steady flow is to calculate the potential 

flow about the profile. Using that external flow calculate the bounda- 

ry-layer displacement thickness. Add the displacement thickness to the 

coordinates of the airfoil and use that shape as input to the potential 

solution. This iteration can be continued until convergence. The skin 

friction is then included along with the final external pressure dis- 

tribution to calculate the forces on tire airfoil. This procedure 

results in a finite-thickness wake. Unfortunately, the variation of the 

potential along the wake must now also be included. To avoid iteration 

on this quantity, a constant potential was assumed. 

n 
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0.010. However the computed pressure drag was nil. This problem has 

been traced to the formulation of the finite thickness wake which was 

acting like a jet to propel the airfoil and hence give no pressure drag. 

Until this i s  corrected, the calculation o f  drag versus angle o f  attack 

appears unwarranted. 

boundary layer in unsteady calculations. 

Nor has the panel method been coupled with the 

In unsteady flow, for moderate reduced frequencies, a quasi-static 

calculation neglecting the unsteady terms and using the instantaneous 

pressure distribution appears to be quite accurate [ 7 6 #  771. This i s  

possible because at low reduced frequencies, (kfx+ll < 0.33, the phase 

of the shear s tress  lags the external velocity by less than 45 deg for a 

laminar boundary layer [781 and less than 10 deg for a turbulent I&yer 

[791. It should be mentioned that boundary-layer compliance % 8 0 1  is 

ignored. 

3.2.7 Includinq Wind TlJnnel Walls 

Having progressed t h i s  far, the representation of the wing in the 

wind tunnel i s  straightforward. The upper and lower walls are replaced 

with doublet panels exactly a s  the wing was, as shown in Figure 20. The 

walls upstream of the wing are truncated while wake panels are included 

to model the downstream section walls. For the results reported here, 

the tunnel was truncated four semichords upstream. Additionally, since 

the tunnel wall i s  far from the wing, only constant strength doublet 

panels were used on the wall. 
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Chapter I V  

MEASUREMENT OF AERODYYAMIC FORCES ON AN AIRFOIL 
OSCILLATING IN A W I N D  TUNNEL 

4 .1  INTRODUCTION 

At the time the author began research at Stanford two other students 

had nearly completed their work. Bill Boyd had examined theoretically 

the effect of chordwise forces on wing flutter S811. Steve Rock under 

Professor Daniel DeBta had measured experimentally the flutter speed of 

a two-dimensional wing I b l ] .  Professor DeBra graciously offered to loan 

Rock's apparatus to me upon the suggestion that I uould use i t  to meas- 

ure the chorduise forces on an a i r f o i l  during oscillatory motion. 

Rock's apparatus uas a 2-0 wing section mounted on an elastic suspen- 

sion that allowed the airfoil to pitch and plunge. The airfoil could be 

excited by two actuators, a pitch torquer motor and a plunge motor. 

After studying the different ways to measure the aerodynamic forces with 

this apparatus, (the suspension actuator inputs, an external balance in 

the suspens on, andlor an internal balance within the airfoil), we per- 

ceived that a balance within a new airfoil Has the least expensive 

option that might succeed. 

The design of that airfoil, the apparatus to oscillate it and the 

measurement of the aerodynamic forces will n u  be described. 
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4.2 EXPERIMENTAL APPARATUS 

4.2.1 Wind Tunnel 

The exper imen t  was conducted i n  S t a n f o r d ’ s  low-speed wind t u n n e l .  

This i s  a c l o s e d - c i r c u i t  t unne l ,  which o p e r a t e s  a t  speeds f rom 18 t o  60 

m/s. A i r s p e e d  i s  c o n t r o l l e d  by a constant-speed, 16-blade f a n  t u r n i n g  

a t  1150 rpm (19.2 Hz) .  Mean t u r b u l e n c e  l e v e l  i n  t h e  t e s t  s e c t i o n  i s  

r e p o r t e d  t o  be about  0.1% 1621. 

The t e s t  s e c t i o n  

0.91 m long., The f 

c l e a r  p l a s t i c .  The 

i s  a 

oo r  

t e s t  

c o n s t a n t  c r o s s - s e c t i o n  d u c t  0.457 m square and 

s s t e e l  p l a t e ,  whereas t h e  w a l l s  and t o p  a r e  

s e c t i o n  i s  suppor ted  by  f o u r  l e g s  u i t h  c a s t o r s  

on t h e i r  ends, which a l l o w  i t  t o  be removed f rom t h e  t u n n e l  c i r c u i t .  A 

10 mm b r e a t h e r  between t h e  t e s t  s e c t i o n  and d i f f u s e r  keeps t h e  s t a t i c  

p r e s s u r e  i n s i d e  near  atmospher ic .  

The dynamic p r e s s u r e  i s  measured u i t h  a U n i t e d  Sensors PDC-8-KL 

P i t o t - s t a t i c  t ube  mounted one and a h a l f  c h o r d  l e n g t h s  i n  f r o n t  o f  t h e  

a i r f o i l .  The P i t o t - s t a t i c  t ube  i s  connected t o  an o i l - f i l l e d  manometer 

t h a t  i s  r e a d  d i r e c t l y  i n  i n c h e s  o f  water.  The r e a d i n g  i s  a c c u r a t e  t o  

about  0.02 i n c h e s  o f  water .  
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4.2.2 Suspension 

The suspension was inherited from Rock I611 without modification 

except for replacement of the pitch flexures and wing. All suspension 

components are located outside of the wind tunnel. The wing is sus- 

pended with its span parallel to the vertical to reduce gravity effects. 

Unfortunately, the standard correspondence between the airloads (defined 

by the airfoil axes) and the tunnel axes ( X ,  Y ,  Z) i s  not retained. The 

force convention is diagrammed in Figure 21. 

The wing is pitched about an axis 35%-chord behind its leading edge 

by an Aeroflex brushless motor operating through a four-bar linkage 

below the test section, Figure 22. All motion at the pivots i s  accom- 

plished elastically through Bendix Flexpivots, Figure 23, with a com- 

bined spring rate of 212 in.-lb/rad (24. N-m/rad). The uncoupled pitch 

frequency i s  10.4 Hr. The pitch motion i s  limited to 22.5 deg and i s  

measured by a Kearfott R235 1A Synchro Resolver located on the top 

crossbeam. 

Plunge actuation is by a linear motor of the type found in computer 

disc drives. The coil i s  attached to a vertical beam connecting the two 

crossbeams. Adjustable stops on the crossbeams limit the plunge motion 

up to the maximum displacement of 210 mm allowed by four folded-canti- 

lever flexures, Figure 24. The plunge natural frequency i s  7.5 Hz uith 

a spring rate of 10.5 kN/m. The displacement is measured by a Schaevitz 

500 HR Linear Variable Differential Transformer (LVDT). The character- 

istics of the pitch and plunge sensors are given in Appendix 8 .  
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Figure 22: Four-Bar Pitch Suspension and Actuator. 

Figure 23: Detail o f  Flexpivot Pitch Joint .  
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FOLDED-CANT1 LEVER 
FLEXURE 

Figure 24: Arrangement o f  Plunge Suspension System. 
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The advantages of this type of 

within 2% over 26 mm), it has low 

importantly for this application, 

rious suction signals due to fore 

tion there is little noise in the 

suspension are: it is linear, (to 

5 X  critical 1, and most 

it i s  quiet. That is, except for spu- 

and aft excursions during ptunge mo- 

output o f  the airfoil balance, due to 

motion o f  the wing, other than the inertia forces. 

The suspension system is permanently attached to the portable test 

section. When installed in the tunnel, the test section is placed on 

foam blocks imbedded in sand to reduce vibration. Further, it i s  not 

bolted to the inlet or diffuser, which conduct fan noise. The inlet 

section gap is sealed by foam rubber. The response of the test section 

to airfoii pitching i s  negligible, but 67 kg must be added to the test 

section so that during plunge tests its transverse reaction is less than 

5% of the motion of the airfoil. Axial tilting of the section is less 

than one milliradian. The plunge motion i s  measured relative to iner- 

tial space b y  mounting the LVDT case in an isolation frame separate from 

the test section. 

4.2.3 1Jinu and Jnternal Balance 

The central structure of the wing, Figure 25, consists o f  a spar and 

two end fittings, which fasten to the flexpivots on the upper and lower 

crossbeams of the suspension. Near the connnection with the suspension 

and external to the uind tunnel, adjustable counterweights project for- 

uard from each end fitting. 

gravity of the ing at the pitch axis, thus providing an acceptably high 

The counterweights place the center o f  
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f l u t t e r  speed (40 m/sec) and minimum coup l i ng  between the p i t c h  and 

plunge mot io  or s imple c o n t r o l l a b i l i t y .  The neck o f  t he  e n d f i t t i n g  

passes through the  wind tunnel  w a l l  and fas tens  t o  the  spar.  

The spar i s  made o f  0.040 in. aluminum sheet, electron-beam welded 

i n t o  a box 17.75 in. (0.45 m) long  with a rec tangu la r  cross-sect ion.  

I n s i d e  the  spar a re  th ree  Celesco Transducer Products MI3101 l oad  c e l l s .  

Tuo p r o j e c t  forward o f  the spar a t  each end o f  the  wing and one t o  t h e  

r e a r  i n  the  center  o f  t he  wing. The load c e l l s  a re  most s e n s i t i v e  t o  

f o rces  normal t o  the  a i r f o i l  chord. The i n t e n t  o f  t h i s  des ign was t o  

produce as c lose  t o  a s t a t i c a l l y - d e t e r m i n a n t  th ree-po in t  supension as 

poss ib le ,  w h i l e  e l i m i n a t i n g  any h y s t e r e s i s  f rom p inned j o in t s .  The nor-  

mal f o rce  suspension i s  diagrammed i n  F igure  2Ca. 

Connecting the  load c e l l s  t o  the  a i r f o i l  i t s e l f  a re  pa ra l l e log ram 

shaped f l exu res .  The f l e x u r e s  pe rm i t  t h e  a i r f o i l  t o  d i sp lace  chordwise 

i n  response t o  s u c t i o n  loads, b u t  a re  s t i f f  i n  o the r  d i r e c t i o n s .  Th is  

chordwise displacement i s  measured by two Kaman Measuring Systems 

KD-2300-.5SU p r o x i m i t y  de tec tors ,  (‘drag sensor# i n  F igure  251, l oca ted  

i n  the  spar, ad jacent  t o  t a r g e t s  on each o f  the a i r f o i l  r i b s .  Each 

f l e x u r e  has a measured s p r i n g  r a t e  o f  49 l b l i n .  18600 N/m) f o r  a t o t a l  

7 l b l i n .  (25.8 kN/m). The chordwise suspension i s  

diagrammed i n  F igu re  26b. 
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The airfoil is made from a single block of styrene foam which has 

been cut to form by a h o t  wire and covered with epoxylfiberglass-cloth 

skin. It is then hollowed out to accept the spar and flexures. The 

forward flexures are screwed to aluminum ribs glued t o  the core and 

skin. The rear flexure is in an enclosure which i s  epoxied to the skin. 

Finally, laminated-balsa endplates are attached to the end of the wing. 

For the majority of tests they uere mounted OR the airfoil ribs, but 

later the endplates were attached to the spar, with a gap of 0.7 mm 

between the endplate and airfoil. A clay fillet on the endplate helped 

to seal the gap. In the first configuration the flow gas comparatively 

free of gap losses. The second configuration provided data free o f  the 

inertial and aerodynamic loads on the endplates. 

The airfoil i s  an NACA 0015 profile with 8 chord o f  235 mm and a span 

o f  417 mm. This corresponds to a tunnel height to chord ratio (H/b) o f  

slightly less than 2.  A glass-bead boundary-layer transition strip was 

applied at 10% of the chord in accordance uith instructions in Reference 

S2 f o r  ensuring transition to turbulent flow. The airfoil weighs 595 gni 

with endplates and 454 gm without. The circular endplates have a diame- 

ter of 254 mm and are centered on the midchord of the airfoil* following 

the guidelines of Reference 83. They are 7 mm thick except near the 

edge, which tapers to a 30 degree sharp angle. A photograph of the air- 

foil being tested i s  shown in Figure 27. Other pertinent physical par- 

ameters of the wing and airfoil are presented in Figure 25 and Table 2. 
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TABLE 2 

Wing Parameters 

(Endplates on A i r f o i l )  

I tem Value Accuracy 

Balance supported weight 
Chord 
Span 
Area 
H /b 
P i t c h  a x i s  
Cen te r  o f  g r a v i t y  
Suc t ion  balance frequency 
Operat ing frequency 

0 . 5 9 5  kg  20 .‘I% 
0.238 m t o .  2% 
0.417 m 20.2% 
0.0992 m2 20.3% 
1.92 21.0% 

35.0% chord 9 0 . 5 %  c 
48.1% chord 20.5% c 
31.0 HZ 23.0% 

7. 5 Hz 210 0% 

Before proceeding f u r t h e r ,  i t  should be noted t h a t  a re fe rence t o  the  

a i r f o i l  means t h a t  p a r t  o f  the  s t r u c t u r e  whose loads a re  be ing  moni tored 

( t h e  foam core, sk in ,  r i b s  and sometimes endp la tes l ;  whereas the  u i n g  

means the  e n t i r e  s t r u c t u r e  which p i t c h e s  and plunges, i .e .  the  a i r f o i l  

and t h e  spar8  counterweights  and sometimes suspension. Also, a c o l o r  

coding system i s  used t o  d i f f e r e n t i a t e  between the sensors. With the  

wing suspended v e r t i c a l l y ,  the  uppermost sensors a re  the  b l u e  load c e l l  

(81 and p r o x i m i t y  d e t e c t o r  (Ed), t he  cen te r  load  c e l l  i s  r e d  (R) and the  

lower sensors a r e  the  green load  c e l l  (GI and p r o x i m i t y  de tec to r  (Gdl. 
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4.3 AIRFOIC BALANCE CALIBRATION 

The expected ranges of the suction, normal force and moment encoun- 

tered by the wing were: 

S: -3.0 t o  2.5 N 

N: -15 .0  to 1 5 r 0  N 

Ma: -0.4 to 0.4 N-m 

Experience in the tunnel showed that, at no time, did a positive suction 

force occur. 

The airfoil balance was calibrated in the test section, Figure 29. 

The acrylic sides were removed and solid 0.015 in. steel wires were 

attached to the airfoil leading and trailing edges with strapping tape. 

The wires were led horizontally over bell cranks to pans which held the 

weights. The bell cranks consisted of two lengths o f  balsa wood at 

right angles to each other with a knife edge at their junction. The 

knife edge was placed into an angle at the side or end of the test sec- 

tion. The wires were guided through the slots of flat-head screws tap- 

ped into the ends of the wood. The bell cranks were made in various 

lengths as needed. 

The load fixtures were used in pairs, Figure 29, one exerting a force 

opposite to the other. To calibrate the output uith respect to any 

force, both pans of a pair were loaded uith slightly more than the maxi- 

mum negative load desired, so that little net force on the wing was 

present. Weights were then added to one pan, representing positive 

load. After returning to zero, weight was removed from the same pan, 
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Figure  29: Calibration o f  A i r f o i l  Balance. 
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r e p r e s e n t i n g  n e g a t i v e  load, u n t i l  t h e  pan was a lmos t  empty. The a p p l i e d  

f o r c e  was r e t u r n e d  t o  z e r o  by  add ing  we igh t  t o  t h e  pan u n t i l  i t  a g a i n  

equaled t h e  w e i g h t  i n  t h e  o t h e r  pan. This p rocedure  ensures t h a t  an 

e x a c t l y  n e g a t i v e  f o r c e  i s  produced r e g a r d l e s s  o f  any m isa l i gnmen t  

between t h e  two f i x t u r e s .  

Two d r a g  and t h r e e  normal l o a d  f i x t u r e s  were used t o  c a l  b r a t e  t h e  

ba lance  o u t p u t s .  most o f  t h e  c a l i b r a t i o n  p o i n t s  i n v o l v e d  a c o m b i n a t i o n  

o f  f o r c e s .  Two normal l o a d s  and one d r a g  load were t h e  max mum s i m u l t a -  

neous number. U s u a l l y  a d r a g  sequence ( f r o m  z e r o  t o  p l u s  maximum 

th rough  z e r o  t o  minus maximum back t o  z e r o )  was r e c o r d e d  wi th  no normal 

load.  

moment c o n d i t i o n  and ano the r  d r a g  sequence reco rded .  

Then t h e  normal l o a d s  Mere i nc reased  t o  a h i g h  l i f t  or high 

The d a t a  were reco rded  on an e i g h t  channel d i g i t a l  t ape  r e c o r d e r  

u s i n g  1 2 - b i t  words. A t  each c a l i b r a t i o n  p o i n t  a t  l e a s t  16 samples u e r e  

taken  a t  100 msec i n t e r v a l s .  If no l a r g e  v a r i a t i o n s  were p r e s e n t  i n  t h e  

sample, a s i m p l e  average uas  used. The few samples w i t h  s i z a b l e  v a r i a -  

t i o n s  were i nspec ted ,  and i n d i v i d u a l  d e c i s i o n s  were made as t o  t h e i r  

u s e a b i l i t y .  Because o f  t h e  word s i z e ,  a s i g n i f i c a n t  amount o f  t h e  non- 

l i n e a r i t y  p r e s e n t  i n  t h e  p r o x i m i t y  sensor o u t p u t  was expected t o  be f rom 

q u a n t i z a t i o n  e r r o r s .  

The c a l i b r a t i o n  m a t r i x  f rom t h e  second c a l i b r a t i o n  i s  shown i n  Table 

3. This m a t r i x  i s  a l e a s t  squares f i t  o f  290 d a t a  p o i n t s .  
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Gd : 
Bd : 
G :  
R :  
0 :  

TABLE 3 

Balance Calibration flatrix 

f S  Fn M L x  
(N/V 1 (N/Y 1 (mN-m/V 1 (mN-m/V 1 

-3.582 - 0 . 4 7 0  -79 .1  -36 .6  
-1.631 0.235 38 .3  16 .6  
- 0 . 0 0 5  1.519 135.4 -305.1 

0 .003 1.529 -62 .7  -1 .6 
-0 .001  1.527 138.0 296.0 

N Y  
(mN-m/V 

-1614. 
864. 

-2. 
0. 
4 .  

This matix relates the sensor outputs, (%G& SBd, etc.), to the measured 

forces-(F,, Fn, etc.1, by the equation, 

where C i s  the calibration matrix. 

Before assembling the wing, the gains o f  the load cells were at the 

same level, while the outputs of the proximity sensors were at a ratio 

o f  two to one. This fact is reflected in the almost equal matrix ele- 

ments for the load cells in the normal force column and the two to one 

ratio o f  the proximity detector outputs in the suction column. A satis- 

factory symmetry in the load cell outputs appears in the pitching moment 

( M I  and rolling moment ( L x l  columns. 

The cross-talk between the outputs i s  very small, as evidenced by the 

The drag elements in the Fn 

and M columns are due to a screw type o f  misalignment in which the 

c-95 



‘ a i r f o i l  tends  t o  yaw about  t h e  Y a x i s  i n  response t o  a normal f o r c e .  

S ince  t h e  p r o x i m i t y  d e t e c t o r  o u t p u t s  a r e  n e a r l y  i n  phase and i n  t h e  

r a t i o  two t o  one, t h e i r  c o n t r i b u t i o n  o r  c r o s s - t a l k  t o  Fnr M and L x  a r e  

equal  t o  t h e  f i r s t  row p l u s  t w i c e  the. second row. I n s p e c t i o n  shows t h i s  

summed c o n t r i b u t i o n  i s  v e r y  smal l .  

The p o s s i b i l i t y  t h a t  a p i t c h i n g  moment would d i s t o r t  t h e  ba lance and 

produce a s u c t i o n  s i g n a l  by r o t a t i n g  the  s u c t i o n  a x i s  i n t o  t h e  d i r e c t i o n  

o f  t h e  a p p l i e d  normal f o r c e  was a l s o  exp lo red .  This s p u r i o u s  s i g n a l  

would be p r o p o r t i o n a l  t o  t h e  p r o d u c t  o f  t h e  normal f o r c e  and t h e  moment 

about  t h e  e l a s t i c  a x i s  o f  t h e  balance.  By c u r v e - f i t t i n g  the  d a t a  t o  

t h i s  v a r i a b l e ,  i t  was apparent  t h a t ,  under t h e  wors t  c o n d i t i o n s ,  a neg- 

l i g i b l e  s i g n a l  was produced d u r i n g  t h e  t e s t s .  

Another t a s k  i n  c a l i b r a t i n g  t h e  a i r f o i l  ba lance i s  t o  e s t a b l i s h  t h e  

o r i e n t a t i o n  o f  t h e  s e n s i t i v e  axes o f  t h e  balance.  The procedure t o  do 

t h i s  b e g i n s  by assuming a r b i t r a r y  a l i g n m e n t s  between t h e  l i n e s  o f  maxi- 

mum sensor o u t p u t  and t h e  chord, a s  shown i n  F i g u r e  3 0 .  Before  c a l i -  

b r a t i n g ,  t h e  l o a d  f i x t u r e s  which app ly  normal l o a d s  a r e  a d j u s t e d  u n t i l  

adding f i f t y  p e r c e n t  o f  t h e  maximum l o a d  produces no o u t p u t  a t  t h e  prox-  

i m i t y  d e t e c t o r s .  Because t h e  a p p l i e d  s u c t i o n  l o a d s  a r e  much s m a l l e r  

than t h e  normal loads, i t  i s  s u f f i c i e n t  t o  a l i g n  t h e  s u c t i o n  l o a d  f i x -  

t u r e s  with the  chord.  

I f  (s’,n‘) a r e  u n i t  v e c t o r s  a l o n g  t h e  s e n s i t i v e  axes o f  t h e  p r o x i m i t y  

d e t e c t o r s  and l o a d  c e l l s ,  r e s p e c t i v e l y ,  and (s,n) a r e  t h e i r  r e c i p r o c a l  

base v e c t o r s  (see Ref. 841, then  t h e  a p p l i e d  l o a d  i s  
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n '  

s : Most-sensi tive axis of  proximity detectors 
n ' :  Most-sensitive axis o f  load cells 

Figure 30: A x i s  System o f  Balance. 
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( 4 . 2 )  

Let us pick (;',j'> so that i' is parallel to s', so: 

s' = i' 

n' = -sinR i' + COSR j'. 

The load applied as described above may also be written as 

In terms of the reciprocal base vectors the measured load i s :  

The reciprocal base vectors are 

j' 
n = -  

cosR 

and 

s = i' + tan8 j'. 

9 

(4 .3 )  

( 4 . 4 )  

( 4 . 6 )  

( 4 . 7 )  

( 4 . 8 )  

(4 .9 )  

Since the loads, ( 4 . 2 )  and (4 .71 ,  are equal 

Now to find the suction and normal forces we must transform from the 

sensitive axes to the airfoil axesI as follows: 



-sin6 cos5 

cos6 sins I[ 1 
0 1 [~~ = [-sin6 cos6 tanR 1 

( 4 . 1 1 )  

Considering that b and 13 are less than 0.01 radian tactually 5 is 0.4 

deg) and Fs/qA i s  less than 0.1, then f o r  the present accuracy require- 

men ts 

( 4 . 1 2 )  

The measurement o f  delta will be considered later. 

The nonlinearities and the standard deviations IS51 o f  the calibra- 

tion points are: 

Nonlinearity Std. Dev. 

Suction Force 0.4% 0.4% 

Normal Force 0.8% 0.2% 

Pitching Moment 1 5% 0.6% 

Because o f  the 12-bit word site, quantization contributes approximately 

0.1% nonlinearity and 0.1% deviation to the suction measurements. The 

repeatability o f  three calibr ions uas excellent; the drag calculated 

by each agreed within 0.5%. 
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4 . 4  CONTROL 

Wing control is entirely open loop. As shown in Figure 31, a signal 

generator provides a sine wave at 7.5 Hr. This signal is conditioned by 

an Electronic Associates TR48-1 analog computer into two signals of the 

necessary phase and amplitude and fed to the actuator current amplifiers 

to drive the wing as desired. It was originally desired to drive the 

wing at plunge amplitudes as high as 10 mm. However, above 6 mn! contact 
. .* 

betueen the plunge actuator coil and core often occurs and introduces 

higher harmonics. So the plunge tests were conducted below amplitudes 

o f  6 mm. The second harmonic content of the displacements were spot 

checked and were never found to exceed 1 percent of the first harmonic 

during any test. 

The drive frequency corresponds with the natural frequency of the 

plunge system because the plunge actuator could not drive the wing at 

large enough displacements away from resonance. No phase instability 

was noticed. To vary the reduced frequency, the speed of the wind tun- 

nel was changed. The minimum speed (maximum k) possible was 19 mlsec 

(k=0.3). The maximum speed was limited by the controllability of the 

model as it neared its flutter speed of 40 mlsec. The Reynolds number 

range was 0.3 to 0.6 million. This, o f  course? introduces Reynolds num- 

ber effects in the data. To minimize these effects, boundary-layer tur- 

bulence is artificially induced by glass beads on the airfoil. 
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Figure 31: Schematic o f  Suspension Actuator Control. 
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4 . 5  SIGNA4 ACQUISTION 

As shown in Figure 32, the sensor outputs were routed through low- 

pass filters. The load cell outputs were also routed through the analog 

computer, for reasons described in the Tares section. The signals were 

then analyzed by a Princeton Applied Research Model 5204 Lock-in Ana- 

lyzer. The Model 5204 consists of two phase-sensitive detectors, syn- 

chronized by the sine-wave generator, which detect the in-phase and qua- 

drature components of an analog signal. The fundamental harmonic of the 

output from each sensor was recorded and, in the case of the proximity 

detectors, the second harmonic output was also measured. For mean vol- 

ues, the sensor outputs were connected to a very low-pass filter. 

The signals are corrected for the presence o f  the filters, including 

the mechanical filtering which occurs because the ratio of the suction- 

force frequency (15 Hz) to the suction-balance frequency (35 Hz) is sig- 

nificant. Physical characteristics of the filters in the network are 

described in Table 4. A photograph o f  the experimental electronics i s  

presented in Figure 33. 
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Figure 32: Flou Chart o f  Data Reduction. 
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Gd DRAG SENSOR 

\ \ 

CENTER FREQUENCY - Hz 
Figure  34: One-Hz Bandwidth Noise Spectra o f  Sensor Outputs, q=O.9" 

water. 

t h e  G l oad  c e l l  and the  Gd p r o x i m i t y  de tec to r .  The a i r f o i l  c o n f i g u r -  

a t i o n  i s  w i t h  the  endplates on the  spar and the  tunnel ope ra t i ng  a t  a 

dynamic pressure o f  0.9 inches o f  water. The l a r g e s t  peak (19.5 Hz) i s  

a t  t h e  fundamental f an  frequency. Other peaks t h a t  show up a re  the  

plunge n a t u r a l  frequency (7.5 Hz), the  suct ion-balance frequency (35 Hz) 

and the  u i n g  d i f f e r e n t i a l  p lunge frequency ( 4 1  Hz). Except f o r  the una- 

vo idab le  plunge resonancer the f requenc ies  a t  which the  da ta  a re  601- 

lec ted ,  7.5 and 15 Hz, are  q u i e t .  The no ise  i n  the  analyzed s i g n a l  i s  

n e g l i g i b l e  because the  e f f e c t i v e  bandwidth o f  t he  5204 Analyzer can be 

made as low as 0.01 Hr. 

Signa ls  due t o  i n e r t i a  f o r c e s  a re  obv ious i n  t h e  case o f  t he  load 

c e l l s  b u t  appear a l s o  i n  the  s u c t i o n  sensors' ou tpu t .  The l a t t e r  r e s u l t  
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from a nonzero pitch angle coupled with plunge acceleration or 

centripetal acceleration of the offset airfoil c.g. during pitch mot- 

ions. The inertia tares were easily measured by oscillating the wing in 

still air. The mass due to the’air surrounding the oscillating wing was 

eliminated by purging the test section with Helium until the signals 

stabilized. The added mass in pure Helium is 10% of that in air. 

Assuming that at least 90% of the air was replaced b y  Helium, the mea- 

sued added mass in plunge was 2827 gm, compared to a calculated value of 

24 gm. The measured and calculated masses of the wing of 595 gm agreed 

within 1 percent. It is also significant that the phase angles indicate 

very little aerodynamic damping. Graphs o f  the pitch and plunge tares 

for the aiifoil with endplates are shown in Appendix C. 

Subtracting the inertia tares from the signals before analyzing them 

was first attempted by adding signals proportional to the displacement 

by means of the analog computer. As long as the displacement is sinu- 

soidal and at the reference frequency, this is similar to the inertia 

subtraction used by Hien [251 .  However, the inertia tares were found to 

be quite linear, and the analyzer was capable of detecting the aerody- 

namic signals in the presence of the inertia signals. Therefore, upon 

considering the nonlinearities added by the extra signals, this method 

of tare subtraction was abandoned. The airfoil balance uas recalibrated 

uith the load-cell outputs routed through the analog computer and this 

arrangement was kept. The calibration obtained this way was consistent 

uith the earlier calibration when due consideration i s  given to the 

gains in the analog computer. 
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The elastic tares result uhen the torque required to pitch the air- 

foil twists the spar and produces apparent forces. These are small ((5% 

of output) but significant. Graphs of the elastic tares are also 

included in Appendix C. 

4.7 WIND TUNNEC CORRECTIONS 

The purpose of uind-tunnel corrections. as they are ordinarily 

appplied, is to infer free flight experience from uind-tunnel data. 

That is not a requirement for the present research. Instead, the pur- 

pose of Timman’s work and the panel method theory is to predict the 

forces-on tlie airfoil while i t  is in the tunnel. 

The three corrections suggested by Reference 86 that should be 

applied to wind-tunnel data are: buoyancy, blockage and streamline cur- 

vature. 

Buoyancy is produced from a gradient in the static pressure along the 

test section and streamline ’squeezing’, which tend to suck the airfoil 

downstream. This gradient was not measured, but from Reference 86 it 

can be estimated that buoyancy adds a mean drag coefficient of 0.002. 

Blockage refers to tlie forces on the airfoil due to the increased 

speed of the flow as it moves around anything of finite thickness, 

either the airfoil or its wake. Together, solid and wake blocking 

increase the effective velocity round the airfoil by about 2%. In the 

case of the panel method uithout boundary layer, the solid blocking is 
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i n c l u d e d  and so would wake b l o c k i n g  i f  a boundary l a y e r  were modeled. 

S ince  t h e  a i r f o i l  boundary c o n d i t i o n s  i n  unsteady f l o w  a r e  a f u n c t i o n  o f  

t h e  u n c o r r e c t e d  f requency,  i t  i s  more a p p r o p r i a t e  t o  i n c l u d e  b lockage  i n  

t h e  t h e o r y .  However, t h e  t h e o r e t i c a l .  r e s u l t s  shown f rom t h i n - a i r f o i  1 

t h e o r y  do n o t  account  f o r  e i t h e r  s o l i d ’ o r  wake b lockage .  This i s  easy 

t o  c o r r e c t ,  however, s i n c e  i t  o n l y  e n t a i l s  a 4 p e r c e n t  i n c r e a s e  i n  t h e  

f o r c e  amp1 i t u d e s .  

The e f f e c t  o f  s t r e a m l i n e  c u r v a t u r e  i s  p r e d i c t e d  by t h e  a n a l y t i c  and 

numer i ca l  t h e o r i e s ,  t h e r e f o r e  no ad jus tmen ts  were made t o  t h e  data.  

S t a t i c a l l y ,  s t r e a m l i n e  c u r v a t u r e  l e a d s  t o  a 10 p e r c e n t  r e d u c t i o n  i n  t h e  

l i f t - c u r v e  s l o p e  found i n  t h e  t u n n e l .  There remains t h e  e f f e c t  o f  t h e  

s i d e  w a l l s  and t h e  f i n i t e  span o f  t h e  model. I t  i s  assumed t h a t  t h e  

comb ina t ion  o f  e n d p l a t e s  and s i d e w a l l s  ensures a two-dimensional  f l o w ,  

4.8 MEASURED RESULTS AND COMPARISOY WITy THEORY 

4.8.1 S t a t i c  T e s t s  

I n  o r d e r  t o  e s t i m a t e  f l o w  smoothness, t u f t s  were a t t a c h e d  t o  t h e  a i r -  

f o i l ,  e n d p l a t e s  and w a l l s .  The r e a c t i o n  o f  t h e  t u f t s  i n d i c a t e d  v e r y  

smooth f l o w  o v e r  t h e  a i r f o i l ,  i n c l u d i n g  t h e  a i r f o i l l e n d p l a t e  j o i n t ,  

t h roughou t  t h e  p i t c h  range o f  t h e  suspension. Some t u r b u l e n c e  was n o t e d  

between t h e  w a l l s  and t h e  e n d p l a t e s  due t o  f l o w  around t h e  e n d f i t t i n g s .  

F i g u r e s  35, 36 and 37 show t h e  s t a t i c  l i f t ,  moment and d r a g  f o r  t h e  
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Figure 35: S t a t i c  L i f t  of  A i r f o i l  with and ui t t iout  Boundary-Layer Tr ip .  
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Figure 37: Static Drag of Airfoil with and without Boundary-Layer Trip. 

airfoil with and without boundary-layer trip and with the endplates 

attached to the spar. The Reynolds number is 0.33 million. The inci- 

dence angle i s  the output of the pitch sensor, which was set to zero 

with the airfoil coarsely aligned with the section centerline. 

The lift s1.ope for the airfoil with boundary-Iayer trip, Figure 35, 

is 0.118 per degree, quite close to the 0.120 per degree found with the 

endplates on the wing. However, there is a noticeable drop in slope for 

the airfoil without boundary-layer trip, which is quite possibly a 

reflection of the low Reynoldsnumber (861 .  

Figure 36 shows the expected very low, almost-constant moment about 

the quarter chord. 
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Before calculating the drag, the balance orientation angle 6 must be 

determined. The criterion for selecting 5 is that the correct 6 prod- 

uces a symmetric drag curve. Since 5 is a fixed physical parameter, one 

value should suffice for all conditions. On this basis a delta of 0.4 

degrees produces the curves shown in Figure 37. With the airfoil iso- 

lated from the endplates, the typical parabolic section drag curve i s  

seen. As expected, the drag of the airfoil without the boundary-layer 

trip is less than with the trip. The size of the drop indicates that 

the difference is due not only to the lessened skin friction and pres- 

sure drag of the unkripped boundary layer but also the absence of the 

drag o f  the glass beadse The minimum drag of 0.019, uhile the same as 

found by Hien K251 in a similar test, still appears high as i f  affected 

by a poor seal at the endplates. 

Figures 38, 39 and 40 show steady-flow measurements o f  the lift, 

moment and drag for the airfoil and endplates with the boundary-layer 

trip applied. The three Reynolds numbers correspond to the speeds used 

to obtain the three reduced frequencies in the oscillatory tests. 

The lift coefficients in Figure 38 show good repeatability among the 

tests, and the lift curve slope is 0.120 per degree (6 .88  per rad). 

Again, these data are not corrected for wall effects. If, to compare to 

other experiments, we apply blockage and streamline curvature correc- 

tions to the static lift curve slope, the uncorrected value of 0.120 i s  

decreased 10 percent for streamline curvature and 4 percent because of 

blockage. The corrected lift slope of 0.104 per degree compares very 

..” 
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w e l l  w i th  o t h e r  measured v a l u e s  o f  s l i g h t l y  more than  0.10 p e r  degree 

1871. 

The moment c u r v e  o f  F i g u r e  3 9  i s  almGst e x a c t l y  t h e  same as f o r  t h e  

a i r f o i l  w i t h o u t  endp la tes ,  F i g u r e  3t. 

I t  can be seen i n  F i g u r e  40 t h a t  t h e  a d d i t i o n  o f  t h e  e n d p l a t e s  

i n c r e a s e s  t h e  d rag  t o  v e r y  h i g h  l e v e l s  and masks the c h a r a c t e r i s t i c s  

n o r m a l l y  seen i n  an a i r f o i l .  The d a t a  do show t h e  expected decrease i n  

d r a g  w i t h  Reynolds number. 

4 . 8 . 2  Simple P i t c h  O s c i l l a t o r y  R e s u l t s  

When t h e  a i r f o i l  i s  p i t c h e d  about an a x i s  o t h e r  t h a n  m idchord*  more 

than  one mode o f  d isp lacement ,  as  d e f i n e d  by Timman 1161 o r  Wu [ l S l ,  i s  

i n v o l v e d .  This i s  a m a t t e r  o f  d e f i n i t i o n  t h e o r e t i c a l l y ,  b u t ,  i n  p r a c -  

t i c e ,  t h e  p i t c h  suspension i s  s u p e r i o r  t o  t h e  p lunge  suspension, f o r  

reasons ment ioned i n  t h e  Tares s e c t i o n .  I t  i s  t h e r e f o r e  d e s i r a b l e  t o  

p e r f o r m  many t e s t s  w i t h o u t  u s i n g  t h e  p lunge  suspension. The t e s t s  i n  

t h i s  s e c t i o n  were made with t h e  p lunge  degree o f  freedom l o c k e d  by u s i n g  

t h e  stops on the crossbeams. 

The d a t a  i n  t h e  s i m p l e  p i t c h  t e s t s  were taken  a t  f o u r  d i f f e r e n t  

a m p l i t u d e s  (a1= 0.5, 1.0, 1.5, and 2 . 0  degrees) about  t h e  a n g l e  o f  z e r o  

l i f t  ( i n c i d e n c e  = -0.5 degrees) and t h r e e  reduced f r e q u e n c i e s  ( k =  0.16, 

0.22 ,  0 . 2 9 ) .  The d a t a  a t  t h e  d i f f e r e n t  a m p l i t u d e s  a r e  g i v e n  i n  Appendix 

D. Since t h e  t r e n d s  with a m p l i t u d e  were as expected, ( l i n e a r  f o r  l i f t  
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and moment; q u a d r a t i c  f o r  s u c t i o n  and drag) ,  t h e  f o r c e s  p e r  un i t  

a m p l i t u d e  a r e  p r e s e n t e d  i n  F i g u r e s  41-45. For  comparison, t h e  a i r l o a d s  

p r e d i c t e d  by p o t e n t i a l  flow a r e  a l s o  drawn. The dashed l i n e  r e p r e s e n t s  

t h e  f o r c e s  i n  f r e e  a i r ;  t h e  s o l i d  l i n e  i s  Timman's theory,  which 

i n c l u d e s  w a l l  e f f e c t s .  The t h i r d ,  broken c u r v e  i s  t h e  r e s u l t  o f  t h e  

panel  method w i t h o u t  boundary l a y e r .  The expected e r r o r s  a t  each 

reduced f requency a r e  shown as smal l  c rosses.  
.*  

The l i f t  data,  F i g u r e  41, agree v e r y  w e l l  w i th  t h i n - a i r f o i l  t h e o r y  

c o r r e c t e d  f o r  w a l l  e f f e c t s ,  much b e t t e r  than with t h e  u n c o r r e c t e d  the-  

o r y .  The panel  method d i f f e r s  c o n s i d e r a b l y  i n  phase. There i s  no s i g -  

n i f i c a n t  d i f f e r e n c e  between t h e  d a t a  measured w i th  t h e  e n d p l a t e s  on t h e  

spar  o r  on t h e  a i r f o i l .  

The moment a m p l i t u d e  i s  a l s o  p r e d i c t e d  w e l l  by Timman's theory .  On 

t h e  o t h e r  hand t h e  exper imenta l  phase i s  about  10 degrees above t h e  pre-  

d i c t e d  values, F i g u r e  42. 

Wi thout  v i s c o u s  e f f e c t s  inc luded,  t h e  t h e o r i e s  cannot  p r e d i c t  t h e  

s t a t i c  d r a g  o r  s u c t i o n .  Here t h e  t h e o r i e s  a r e  used t o  e s t i m a t e  t h e  d i f -  

fe rence between t h e  mean s u c t i o n  o r  d r a g  d u r i n g  o s c i l l a t i o n  and t h e  

s t a t i c  va lues.  The change i n  mean s u c t i o n ,  ACSon p r e d i c t e d  by Timman's 

t h e o r y  i s  a g a i n  much c l o s e r  t o  t h e  measured v a l u e s  t h a n  t h e  t h e o r y  with- 

o u t  w a l l  e f f e c t s ,  a l t h o u g h  t h e r e  i s  n o t  a s  much a c t u a l  v a r i a t i o n  with 

frequency i n  t h e  d a t a  as i n  t h e  theory ,  F i g u r e  43. One i m p o r t a n t  reason 

t h a t  t h e  t r e n d s  with f requency o f  t h e  d a t a  a r e  n o t  as expected i s  t h a t  

Reynolds number e f f e c t s  a r e  a l s o  i n v o l v e d .  
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The change in mean drag, h C d o ,  inferred by the components of the nor- 

mal force and suc'tion falls in the region of both thin-airfoil theories, 

Figure 44. The resolution of the data is not quite good enough to allow 

comment on the merit of either. The panel method appears to underpred- 

ict the suction and therefore overpredict drCd0. 

One of the singular successes of the pitch tests was the measurement 

of the second harmonic suction, Figure 45. 80th the amplitude and phase 

agree well with corrected thin-airfoil theory. Furthermore, it is to be 

noted that this amplitude is experimentally close to the mean value of 

suction as predicted, despite the fact that viscous effects might be 

expected to'decrease the mean suction. The fact that the phase of the 

second harmonic suction differs from the phase of the normal force sig- 

nifies that the suction force is not just a rectified normal force, that 

i s ,  the aerodynamic force vector i s  definitely tilting back and forth as 

the airfoil pitches. No second harmonic suction prediction' by the panel 

method is shown. I t  is considerably different from thin airfoil theory. 

One can conjecture that it is necessary to include second-order varia- 

tions in the potential to accurately calculate the second harmonic suc- 

tion. 

4.8.3 Simple Pitch with Mean Anslq 9 f  Ettack 

In general, an oscillating uing uill not be operating with zero mean 

lift. Theoretically, the only effect of a steady angle of attack will 

be the appearance o f  a mean lift and a first harmonic suction and drag. 

To test this, the uing uas oscillated in simple pitch at four different 
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mean angles of  attack, -1 .0 ,  -0.5. 0.5 and 1.0 degrees. The reduced 

frequency uas 0.22 and the pitch amplitude uas 1 degree in all cases. 

As shoun in figure 46, the m e a s w e d  first harmonic suction is linear 

in mean angle of attack, as expected. The measured slope is 0,0037 per 

degree, compared to thin-airfoil prediction of 0.0034 in free air and 

0.0036 in the uind tunnel. Again the corrected theory proves more accu- 

rate. The phase i s  predicted well by either theory. There uas no 

change in the oscillatory lift and moment or second harmonic suction. 

Incidentally, the incidence at which the fundamental suction goes to 

zero ( - .55 degrees) correlates very well with the incidence of zero lift 

( - .SO degrees). 
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4.8.4 Simple Plunqe 

As for simple pitch, the uing was oscillated at four different ampli- 

tudes (h = 0.013, 0.026, 0.039,,0.052 semichords) for the same values of 

reduced frequency (0.16, 0.22, 0.29). The mean angle of attack Mas 

zero. The measured data are in Appendix E and the values for unit 

amplitude are presented in Figures 47, 48 and 49. 

The measured lift, Figure 47, i s  predicted well by the corrected 

thin-airfoil theory, both in amplitude and phase. The panel method’s 

amplitude i s  close: but the phase is too large. 

The amplitude of the moment is also a good comparison, Figure 48. 

The thin-airfoil theories and the panel method are close to each other. 

As in the simple pitch case, the phase agreement is not good. The 

actual phase remains very close to the static value of 90 degrees, uhile 

the prediction has a strong frequency dependence. No systematic source 

is knoun for an error as large as the 20 deg discrepancy between theory 

and experiment. The largest deviation i s  predicted to be 10 deg at 

kz0.29, and the data from each test (Figs. E.4-E.6) have no more than 

this scatter. It is also noteuorthy that the results of the tuo airfoil 

configurations do not differ markedly. 

The measured &do, uhich is the negative of AC,o in pure plunge, var- 

ies significantly between the tuo airfoil configurations, Figure 49. 
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With the endplates a t tached t o  t h e  a i r f o i l ,  l i t t l e  thrust i s  produced. 

However, when the  endplates a re  n o t  a t tached t o  t h e  a i r f o i l  a t h r u s t  

equal t o  o r  exceeding t h e  p r e d i c t i o n  i s  measured. This i s  the o n l y  

dynamic t e s t  which shoued any s i g n i f i c a n t  change between endplate 

con f igu ra t i ons .  Again, the panel method and Timman’s theory  agree. 

No measured da ta  f o r  the  second harmonic s u c t i o n  i n  pure plunge i s  

presented. As uas mentioned, misal ignment i n  the pIunge suspension 

impar ts  s i g n a l s  t o  t he  s u c t i o n  sensors uh ich,  a l though apparent ly  n o t  

random, (see Appendix C ) ,  are  l a r g e  enough t h a t  u n c e r t a i n t y  i n  the t a r e s  

swamps the  expected s i g n a l .  No conf idence can be h e l d  i n  t h e  r e s u l t s  

and so none are  presented. 
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4 . 8 - 5  Combined P i t c h  and Pltinse n o t i o n  

As a f i n a l  t e s t ,  measurements were made o f  the  a i r l o a d s  on an a i r f o i l  

which i s  p i t c h i n g  and p lung ing  w i th  va r ious  phase angles between t h e  tuo 

motions. The motion, in tended t o  be r e p r e s e n t a t i v e  o f  a p r o p u l s i v e  

wing, was a plunge ampl i tude o f  0.040 semichords and a p i t c h  ampl i tude 

o f  0.7  degrees a t  a reduced frequency o f  0.22 .  S i x  d i f f e r e n t  phase 

angles were chosen: 0, 90, 180, 270, 225, and 315 degrees. The l a s t  two 

were chosen t o  i n v e s t i g a t e  b e t t e r  the  n a t u r a l  f l i g h t  r e g i o n  near 270 

( - 9 0 )  degrees. 

T h e - l i f t ,  moment, and changes i n  s u c t i o n  and drag are  p l o t t e d  aga ins t  

the  phase angle between the  displacement and p i t c h  i n  F igures  50-53. 

The solid curve represents  the p r e d i c t i o n  o f  Timman. The p r e d i c t i o n s  

are  exac t  a t  each exper imental  phase angle, bu t ,  s ince  some exper imental  

d e v i a t i o n  occur red  from the  des i red  p i t c h  and plunge ampl i tudes, the 

curves a re  approximate between da ta  po in ts .  

The measured da ta  f o l l o w  the p r e d i c t e d  l i f t  and phase we l l ,  F igu re  

50, except f o r  an apparent ly  erroneous da ta  p o i n t  a t  235 degrees. The 

moment data, F igu re  51 i s  ambiguous. The da ta  a t  0, 90, and 315 degrees 

f o l l o w  the  p r e d i c t i o n ,  w h i l e  the  p o i n t s  a t  180 and 270 a r e  much h ighe r  

than pred ic ted .  The phases a t  these two p o i n t s  a l s o  i f f e r  from the  

theory.  The l a r g e  s c a l e  o f  F igu re  51 makes the  phase comparison between 

theory  and exper iment appear good, b u t  a c t u a l l y  the  d screpancy i s  10 t o  

20 degr the  same as i n  the  pure  p lunge case. 
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The suction data, which are recorded separately from the normal force 

data, are s h o w  in figure 52. Overall, the measured suction i s  much 

less than predicted. This leads to measured increases in drag at all 

but one point, Figure 53. 

4.9 MEASUREMENT ERRORS 

An analysis of the error sources for each of the results was made 

using the accuracies mentioned for the values of dynamic pressure, cal- 

ibration nonlinearity, etc. Each source was assumed to be independent 

o f  the other so that the square root o f  the sum o f  the squares o f  each 

separate error would be a good approximation to the standard deviation 

o f  the final error. These expected deviations are included in each of 

the figures by a Maltese-cross type of symbol. 

In the suction measurements the expected error appears to be pessi- 

mistic, see Figure 45. This may be caused by an overly large calibra- 

tion nonlinearity due to temperature drift of the balance. To explain, 

the suction sensars were not well temperature compensated, and the zero 

drifts as ambient temperature changes. Over one oscillation cycle, 

(117.5 secl, this drift is negligible and below the passband o f  the 

lock-in analyzer, but during a long calibration this drift produces a 

nonlinearity which would not be present if the balance could be calib- 

rated quickly. BY measuring the change in mean suction uhen stationary 

and immediately afterward while moving, the effect of this drift is min- 

imized. 
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4.10 DISCUSSION 

The experimental program succeeded in measuring the unsteady chord- 

wise airloads on an oscillating airfoil at reduced frequencies above 

that of Obye 1271. 

The pitch data show a very convincing consistency. The lift agrees 

in amplitude and phase with corrected thin-airfoil theory. The moment 

agrees in amplitude but shows about 10 degrees more advance than theory 

or the results of Halfman 1321. Very good agreement is obtained for the 

values of the mean, first and second harmonic suction. These data sup- 

port the common origin o f  the mean and second harmonic suction predicted 

i n  potential theory. This finding also agrees with the results of Obye 

1271. 

It should be reiterated that some Reynolds-number effects appear when 

the data are plotted versus reduced frequency. The extent o f  these 

effects is difficult to estimate in the absence of independent varia- 

tions of k and Re. 

Except for the moment phase, the data in plunge also agree with the- 

ory. The two endplate configurations produce two distinct trends in the 

mean drag curve, the more doubtful oner (the one in uhich the drag of 

the endplates i s  also being measured), i s  further from the theory. 

It would be easy to speculate that the effects of a boundary layer 

are responsible f o r  the poor prediction of the moment phase in pure 
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plunge. However, the experimental moment phases do not match those 

found by Halfman [321. The error analysis indicates that the reported 

phases are correct for this experiment. I t  seems likely, therefore, 

that the lou Reynolds numbers of this experiment, resulting in some sep- 

aration, produce misleading moment phases. 

Drag measurements in plunge constitute the only case in which the 

model configuration produces significant changes in the data. This is a 

vital point. Putting the endplates on the spar instead of the airfoil 

reduces the plunge tares by 25 percent and the pitch tares by 30 per- 

cent. The inertia forces can be as high as 75 percent of the output of 

the sensors. I f  these had been measured incorrectly, large changes in 

the aerodynamic coefficients would result. On the other hand, oscilla- 

tory flow over the endplates should produce some variation in their 

drag, 

Measurement of the second harmonic force during plunge motion was 

found impractical. First, the useable amplitude uas sixty percent of 

original estimates, and secondly, the second harmonic signals due to 

unintentional fore-and-aft airfoil motion were much larger than the 

expected signal. Both of these problems were due to misalignment of the 

plunge suspension, a problem that is not easily corrected. 

The theory most successful in predicting the forces is the thin-air- 

foil theory corrected for wind tunnel walls. Increasing the theory 4 

percent to include blockage further improves the comparison, (see, for 
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example, Figure 4 1 ) .  Garrick's theory neglects the important wall 

effects, while the panel method includes second order effects such as 

thickness and solid blockage corrections, but inconsistently does not 

include viscous effects. When a boundary layer is successfully incorpo- 

rated i n  the panel method, it may prove capable of predicting the steady 

as well as the oscillatory drag. 

The experimental data do support the conclusion that oscillating 

pressures are responsible for the chordwise forces on an oscillating 

airfoil, as well as a large part of the drag forces. Viscous effects 

show up mainly in the static drag component, (which was subtracted from 

all unsteady data before comparison with theory), and the change in mean 

drag. 
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Chapter V 

SUflMARY AND RECOMflENOATIUNS 

5 . 1  SUMMARY 

A rev iew o f  t h e  p resent  s t a t e  o f  aerodynamic t h e o r i e s  concern ing 

o s c i l l a t i n g  u ings  i n  incompress ib le  f l ow  has been g iven.  From among 

theses two were se lec ted  t o  c a l c u l a t e  the  fo rces  on a 2-D a i r f o i l  p i t c h -  

i n g  and p lung ing  i n  a low-speed wind tunnel .  

Timman's a n a l y t i c  theory was completed by d e r i v i n g  t h e  leading-edge 

s u c t i o n  force.  I f  blockage c o r r e c t i o n s  a re  a l s o  made, t h i s  theory  pre- 

d i c t s  bes t  t he  c h a r a c t e r i s t i c s  o f  the  measured a i r l oads .  Using the  f u l l  

B e r n o u l l i  equat ion,  the  presence o f  second harmonic pressures due t o  

f i r s t - o r d e r  changes i n  p o t e n t i a l  was revealed. These pressures lead t o  

a second-harmonic f o r c e  analogous t o  the leading-edge s u c t i o n  o f  th in  

a i r f o i l  theory.  Because t h i s  theory  p r e d i c t s  the  mean chordwise f o r c e  

much b e t t e r  than the second-harmonic force,  i t  i s  con jec tured  t h a t  i t  i s  

necessary t o  i nc lude  the  second-order v a r i a t i o n s  i n  p o t e n t i a l .  To be 

c o n s i s t e n t  wi th the  i n c l u s i o n  o f  th ickness  e f f e c t s ,  the  c h a r a c t e r i s t i c s  

o f  a boundary l a y e r  shou ld  a l s o  be inc luded.  

An  a i r f o i l  model t o  measure the  unsteady aerodynamic f o r c e s  was suc- 

c e s s f u l l y  designed, cons t ruc ted  and tes ted .  E x c e l l e n t  agreement between 

theory  and exper iment i n  s imple mot ions uas found f o r  e l l  a i r l o a d s  
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except the  p i t c h i n g  moment phase. Th is  i n d i c a t e s  t h a t  t h e  t h e o r e t i c a l  

model should i nc lude  a boundary l a y e r  and f u r t h e r  tes ts  

h igher  Reynolds numbers than present .  

The success o f  T 

p l a y  a p r imary  r o l e  

mman’s 1161 theory i n d i c a t e s  t h a t  Y 

i n  genera t ing  t h e  unsteady measured 

be conducted a t  

s c o s i t y  does n o t  

forces.  

5 .2  RECOMMENDATIONS 

The author  cons iders  t h e  f o l l o w i n g  t o  be the nex t  l o g i c a l  s teps  i n  

pursu ing  t h i s  l i n e  o f  research: 

1. Continue the improvement o f  t h e  panel code. F i r s t l y ,  the second- 

o rder  v a r i a t i o n  i n  p o t e n t i a l  i s  r e q u i r e d  t o  c a l c u l a t e  t h e  second 

harmonic fo rce .  Secondly, the  a b i l i t y  o f  the  program t o  handle 

surge mot ion should be checked. F i n a l l y  the  panel code should be 

coupled w i t h  a method f o r  p r e d i c t i n g  the  e f f e c t s  o f  the  unsteady 

boundary l aye r .  

2.  Since a p a r a l l e l  a n a l y t i c  theory was found so h e l p f u l ,  r e t r a c e  

Woods‘ a n a l y s i s  1 4 2 1  and d e r i v e  the unsteady s u c t i o n  f o r c e  f rom 

h is  theory  f o r  a t h i c k  a i r f o i l  u i t h  surge mot ion.  

3. Use the  e x i s t i n g  apparatus t o  repeat  and expand upon the  present  

experiments. Since the  p i t c h  tests  were so s.uccessfu1, they 

should be expanded by running a t  a g rea te r  range o f  f requenc ies  

than was thought p o s s i b l e  o r i g i n a l l y .  The p i t c h  suspension can 

a l s o  be used t o  separate frequency and Reynolds Number e f f e c t s .  
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Combined motion measurements uere limited; more phase angles and 

motions should be simulated. The discrepancy between the moment 

phase and theory and the data of Halfman should be investigated. 

4. Improve the experimental apparatus by aligning the plunge suspen- 

sion and adding accelerometers to the airfoil. BY carefully 

aligning the plunge suspension, the tares may be reduced to the 

point where the signals due to aerodynamic forces are measurable. 

I f  complexity and cost are not as vital as in the original 

design, then accelerometers on the airfoil would be worthwhile. 

They would independently provide a measure o f  the inertia forces 

-while the airfoil is oscillating. 

5. Other improvements to the apparatus that would be worthwhile 

uould include: 

AI A quick way to calibrate the balancep thus minimizing 

drift effects and allouing more calibrations. 

B) A computer available during experiments to reduce data 

immediately after a test. 

C) The use of a synchronous demodulation technique, sug- 

gested by Dan Debra, that involves slowly modulating the 

amplitude of the oscillation in order to generate a sinusoidal 

mean suction which can be detected by a Lock-In Analyzer. 

6. Using the panel method and Woods' theory investigate more fully 

the effect of surging. This plays an important part in natural 

flight along uith the performance of vertical-axis wind turbines 

and helicopter rotors. 



C-140 



APPENDIX A 

Complex N o t a t i o n  

Most readers  o f  t h i s  d i s s e r t a t i o n  w i l l  be f a m i l i a r  with d e s c r i b i n g  an 

o s c i l l a t o r y  q u a n t i t y  as be ing  the  r e a l  p a r t  ( o r  the  imaginary p a r t )  o f  a 

complex q u a n t i t y ,  f o r  example 

plunge displacement = Re h eikt . I 1  ( A .  1) 

The f a c t  t h a t  h i s  complex i n f e r s  t h a t  t he re  i s  a phase s h i f t  o f  the  

plunge displacement a t  t = O .  For convenience, (A.1) i s  u s u a l l y  w r i t t e n  

plunge displacement = h, ( A . 2 )  

and OReal p a r t  o f 0  and eikt  i s  understood, 

If the  plunge displacement i s  m u l t i p l i e d  by a r e a l  o r  imaginary num- 

ber, as i n  
* 
h =: i k  h, 

i t  i s  s t i l l  c o r r e c t  t o  i n t e r p r e t  t h i s  as 

plunge v e l o c i t y  = Re i k  h eikt c 
k 

B u t  i f  an o s c i l l a t o r y  quant 

quan t i t y ,  Cnr t o  o b t a i n  the  

u c t  migh t  be u r i t t e n  

(A. 3) 

(A .  4 )  

ty, h, i s  m u l t i p l i e d  by another  o s c i l l a t o r y  

power i n  pure  p lunge o s c i l l a t i o n ,  the  prod- 
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.) 

C w  = Cn h. 

It would be incorrect to interpret this as 

Cn e i k t  e i k t  . I 
Rather it is 

Power = Re Cn e i k t  Re h e i k t  I 1 1 '  I 
which when everything i s  uritten out and regrouped can be written 

( A .  5 )  

(A .  6 )  

( A .  7 )  

This illustrates that the product of two oscillatory quantities of the 

same frequency is a constant and a double frequency term. As long as we 

keep the correct interpretation in mind, though, i t  is still more con- 

venient to use the form of ( A . 5 ) .  This has been done in the text. 

This form is also particularly convenient in computation to take 

advantage of the complex capability of FORTRAN. The more general theory 

of Wu 1181 uas programmed in complex arithmetic in half the steps 

required for a real arithmetic version of Garrick's simpler theory 1151. 

The reader may compare the condensation in the text, for example Eqs. 
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(2.31-2.343, to Mu's original paper and decide for themself which is 

preferable. 

In describing the phase relationship between the second-harmonic 

pouer and displacement, the ambiguity uhich arises due to the dissimilar 

frequencies o f  the two signals must be resolved. To illustrate how this 

i s  done in the text, the power can be uritten 
. .. 

where C w o  and C w ~  are real amplitudes. 4, describes the phase lead of  

the power. The reader should be aware that this phase is always between 

-90 and 90 degrees, and is referred to here as the cosine phase shift, 

since the real part o f  the complex quantity was used. I f  one uses the 

imaginary part, as Garrick [I51 did, the phase i s  shifted by 45 degrees 

and is referred to as the sine phase angle. 
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APPENDIX B 

Sensor Characteristics 

Figures 0.1 and 8.2 present the calibration data f o r  the pitch and 

plunge displacement sensors. They are followed by the manufacturer’s 

descriptions of the balance sensors. 
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Nonlinearity: 0.3% over the range f 3 deg. 

Figure B. l :  Calibration Characteristics o f  Pitch Sensor. 
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Nonlinearity: 0.2% over the range ?6 mm. 

Figure B.2:  Calibration Characteristics o f  Plunge Sensor. 
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F EATU RES : 

* LOW COST 
EXCELLENT ACCURACY 

* SMALL SIZE 
RUGGED CONSTRUCTION 

DE SCRl PTlON 
The Micro-Beam Load Cell is designed to provide ai i  
the advantages of  a beam for l ow  range force 
measurements. 

This combination of high output, low deflection and 
ruggedized construction provides for excellent 
accuracy. 

A wide choice of ranges and low unit cost make this 
controlled environment load cell ideal for OEM scale 
manufacturers. 

SPEC 1 F ICATIO N S 
Non-Linearity (Terminal Method): 
Hysteresis (Unidirectional): .03% full scale. 
Sensitivity Series 20: 2MV/V a t  rated capacity. 
Sensitivity Series 30: 3MVlV a t  rated capacity. 
Accuracy of Full Scale Output: 0.10% Ten. or Comp. 
Zero Balance: tl.O% Full Scale. 
Input & Output Resistance 350 Std.: *1.0% ohms tolerance. 
Temperature Effect on Zero Balance:f0.0008% of full scale/'F. 
Temp-ature Effe-;: on Ou:;;u::f3.0008X of full sale!' F. 
Temperature Range, Compensated:+ 30'to +130° Fahrenheit. 
Temperature Range, Safe: -6gto +275' Fahrenheit. 
Excitation Voltage Recommended: 70 Volts, DC or AC. 
Max.: 18 Volts, DC or AC. 
Overload Rating: 

.05% F.S. Ten. or Comp. 

3 MV/V 150% Rated capacity (min.) 
2 MV/V 300% Rated capacity (min.) 

1" off axis<0.10% full scale 
3" off axis ~0.30% full scale 

Side Load Effects: 

Deflection:<.002 in. full scale. 
Creep, 20 minutes at  full load:c03% full scale. 

STANDARD RANGES (Pounds)* 
Uni-Directional Bi-Directional 
0 - 2.5 f 2.5 
0 - 5.0 f: 5.0 
0 - 7.5 f 7.5 
0- 10.0 * 10.0 

0 - 20.0 +, 20.0 
0- 15.0 * 15.0 

0 - 25.'0 f 25.0 

*Divide by 2.204 to obtain 
range in Kilograms. 



4 CONDUCTOR SHIELDED 2  CABLE. 5 FT. 

MECHANICAL DIMENSIONS - 

5/16 

NOTES: 

MOUNTING 1NSTRUCTlONS 
Fasten securely to flat rigid surface 
with two 8-32 x 1 114 screws. 

(ALL MODELS) 

1. Special Ranges and configurationsavailable on 
special order. 

2. Normal Delivery: up to 10 units, four (4) weeks 
from date of purchase order. 

3. A l l  standard cells are supplied with 10 feet of 
cable. 

4. Celesco Transducer Products certifies that a l l  load 
cells are tested and inspected and found to meet 
published specifications at time of shipment. 

5. Celesco Transducer Products further certifies that 
i t ' s  calibration measurements are traceable to NBS. 

6. Prices are subject to change without notice. 

TENSION-POSITIVE 
COMPRESSION-NEGATIVE 

WIRING DIAGRAM 

Terms and Conditions: 

1. Please place your order with our local representa- 

2. Terms: Net 30 days, FOB Canoga Park, Ca. 
3. Warranty: Celesco Transducer Products Standard 

Warrantee i s  applicable to the low range Micro- 
Beam Load Cell products. 

tive or with the factory direct. 

Ordering 1 nforrnation: 

MODEL NUMBER 
SENSITIVITY MV/V 
RANGE Lb or Kg 
SPECIAL 



MODELS KD-2300-SSU & P(D-2300-SSUM 

FEATURES 

SMALL SENSOR DIAMETER - 2mm (0.080 inches) 

MI CROl NCH RESOLUTION 

EXCELLENT THERMAL STABILITY 

NON-CONTACTING Eddy Current Operating Principle 

LINEAR1 TY Within t 1.25 microns (i SO microinches) 

UP TO 50 kHz FREQUENCY RESPONSE 

DESCRIPTION 
KAMAN'S MULTI-VIT (MULTI-purpose Variable Impedance 
Transducer) Displacement Measuring System i s  a non-contact- 
ing proximity measuring system consisting of sensor, cabling, 
and signal conditioning electronics. The output voltage of the 
system i s  proportional to the distance between the face of the 
sensor and any metallic (conductive) target. The displacement 
measuring range of up to 0.5 mm (20 mils) features linearity 
within k1.25 microns (f50 microinches, see Figure 1 ), repeata- 
bility and resolution better than 0.25 microns (IO microinches). 

OPERATING PRINCIPLE" 
The measuring system utilizes a principal of impedance 

variation which is  caused' by eddy currents induced in the 
conductive target material. The electromagnetic coupling be- 
tween the coil and the target i s  dependent upon their common 
separation distance. In the functional system, a bridge circuit 
i s  used in a manner such that the temperature effects are essen- 
tially cancelled. 

The cabling is used to transmit the signal to and from the 
sensor. The associated signal conditioning consists of an oscil- 
lator, amplifiers, and a demodulator that provides an analog 
output signal directly proportional to displacement. 
*Patent Pending 

TYPICAL APPLICATIONS 
Applications include displacement (proximity) measure- 

ments of shafts, disks, plates, foils, or other ferrous and non- 
ferrous metallic objects. Oily, dirty, or humid environments 
between the sensor and target wi l l  not affect the system 
accuracy. 

The 2 mm diameter sensor permits non-contacting meas- 
urement a t  points never before possible. Additionally, the 
excellent accuracy and thermal stability permit the ultimate 
in precision displacement measurement. The KD-2300t5SU 
is designed for use with nonmagnetic targets and KD -2300- 
.5 SUM with magnetic targets. 
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Figure 1 Linearity 
One mil offset between KD - 2300 - .5SU sensor face and 
304 SS target. Output voltage adjusted to 2 vola full 3&2. 
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SPEClFtCATIONS" 
I 

SYSTEM PERFORMANCE 
Displacement Range 

Linearity (see Figure 1) 
Repeatability 
Resolution lstaticl 
Hysteresis 
Sensitivity 

[Offset<O.05 mm (2 miis)] 

Frequency Response @ 1 Volt Output 
Output Voltage. Analog 

Factory Calibration 
Field Adjustable 

Output Current 
Output Impedance 

TEMPERATURE 
Thermal Sensitivity Shift 

Operating Temperature Range 
Sensor 

Sensor and Cable Iexcluding connector) 
Electronics 

Sensor and Cable (excluding connector) 
Electronics 

Storage Temperature 

POW E R SUPPLY REQUl R EMENTS"" 
Voltage 
Voltage Regulation 
Current 

METRIC UNITS 

0.5 mm 
Within ?: 1.25 microns 
Better than 0.25 microns 
Better than 0.25 microns 
None 
4 mV/micron (adjustable to 

Zeso to 50 kHz (-3 d8 point) 
>8mV/micron) 

0-1VdC 
From -5.5 to + 6.5 Vdc or in 

direct engineering units 
15 mA maximum 
5 ohms maximum 

Less than 0.23 micronsl'C 

0°C to 55'C 

-55OC to lo5°c 

-55'C to 150'C 

-55'C to 15OOC 

Plus and Minus 12 Vdc 
t % Vdc 
70 mA 

ENGLISH UNITS 

0.020 incbes 
Within 2 50 microinches 
Better than 10 microinches 

None 

Zero to 50 kHz (-3 d8 point) 

0 - 1  Vdc 
From -5.5 to + 6.5 Vdc or in 

direct engineering units 
15 mA maximum 
5 ohms maximum 

Less than 5 microinches/°F 

-67 OF to 300' F 
32OF to 132OF 

-67OF to 300'F 
-67OF to 220OF 

Plus and Minus 12 Vdc 
f X Vdc 
70 mA 

* Values are typical (unless noted) and bard upon 300 Series Stainless Steel nonmagnetic or ASME 4130 magnetic targets. 
!See options for Kaman Power Supply. 

SYSTEM CON FIGURATIONS OPTIONS 
DlMENSlONS ARE MAXIMUM IN MILLIMETERS (INCHES) 

Thermal Sensitivity compensation calibration a t  specified 
displacement over any 56C degrees (1OOF degrees) maximum 
band between -55' 6 and 150 'C (-67'F and 3 O O O F )  for 
sensor and cable. 

P Power Supply P-3000 or P-3100 with digital readout, 
to provide regulated + and - l2Vdc output for up to 6 sys- 
terns. Standard input voltage is 115 Vac. If 230 Vac is  requiied 
add suffix A (e.g. P- 3000A). Specification sheets are available. 

Of SENSOR 

P Power and otput cable: 10 feet (part no. 850657-010). 
t Micrometer Calibration Fixtuie: 

English - part number 850854 - 001 
Metric - part number 850854 - 002 

t Rocommended accessories for ease of wstem calibration and us.. 
(SM Figure 2).  

ORDERING INFORMATION 
MICROMETER 
CALlBRATtON POWER AND Specify by model number and the desired options. 

Model number KD - 2300 -.5SU is for nonmagnetic targets and 
KD - 2300 -.5SUM is for magnetic targets. I f  two or more 
sensors are to be mounted within 4 mm (0.160 inches) of each 
other, synchronization of the electronics i s  suggested. 

All specifications are subject to change without notice. 

OUTPUT CABLE 

SCIEIVCZS CQRPQRATlQ1y 
A K A M A N  C O M P A N Y  

KD-2300-.5SU P-3100 
POWER SUPPLY" 

Figure 2 Calibration and Measuring System 1800 Garden of the Gods Rd Tel. (3t33) 5391500 a Tdex 452412 
&iiing Address P. 0. Box 7463 Cdor8do Springs, colorsdo 80933 

MU*.4SU746 Printed in the U.S.A. 
Racommendod optional rccmmrir 
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APPENDIX C 

Tares 

The f o l l o u i n g  f i g u r e s  are  the outputs  of the. sensors  with the wind 

o f f .  The endplates  are on the a i r f o i l .  In order, they are the e l a s t i c  

t a r e s  (Figure C . 1 1 ,  pi tch  t a r e s  (Figures C.2-C.43, and plunge t a r e s  

(Figures C.5-6.63.  There were no mean outputs f r o m  the balance sensors  

due t o  pure plunge. 
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Figure  C.l: Sensor Outputs due t o  P i t c h  Motor Torque. 
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Figure C.2: Load-Cell Tares i n  Simple Pi t ch .  
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Figure C.3: Sensor Mean Output Tares in Simple Pi tch.  
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Figure C.4: Sensor Second-Harmonic Output Tares i n  Simple Pitch. 
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Figure C.5: Load-Cell Tares i n  Pure Plunge. 
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Figure C .6: Sensor Second-Harmoni c Output Tares in Pure PI unge. 
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APPENDIX 0 

Simp1 e ,Pitch Data 

Figures 0.1-0.3 shou the variation of the normal force uith respect 

to the amplitude of pitch oscillation at three reduced frequencies. 

figures D.4-0.6 show the pitching moment. The changes in mean suction 

and drag are presented in Figures 0.7-0.9.  Finally, the second harmonic 

suction i s  shoun in figures 0.10-0 .12 .  For comparison the potential 

theory corrected f o r  wall effects is draun as a s o l i d  line. 
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Figure D.l: Normal Force i n  Simple Pitch, k=0.16. 
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APPENDIX E 

Simple Plunge Data 

Figures E.l-E.3 show the variation of the lift with respect to the 

amplitude o f  plunge osc llation at the three reduced frequencies. Fol- 

lowing that i s  the pitching moment (E.4-E.6) and the change in mean drag 

(E.7-E.9). For comparison the potential theory corrected for wall 

effects i s  drawn as a solid line. 

C-175 



L I F T  AND 
NORMAL FORCE 

COEFF I C  I ENT 

1 

0.08 

0.04 

0 

ENDPLATES: 

n ON AIRFOIL 

0 0.01 0.02 0.03 0.04 0.05 

ENDPLATES: 

n ON AIRFOIL 

0 0.01 0.02 0.03 0.04 0.05 

PLUNGE DISPLACEf4ENT - h/b 

70 t 
0 0.01 0.02 0.03 0.04 0.05 

Figure E. l :  Lift i n  Pure Plunge, k-0.16. 

C-176 



0*08 r 

90 

LIFT AND 

- t t 

NORElAL FORCE 

deg 
70 

COEFFICIENT 

c1 1 

u u a 

Cl ON AIRFOIL 

0.04 

0 
0 0.01 0.02 0.03 0.04 0.05 

Cl ON AIRFOIL 

0.04 

0 
0 0.01 0.02 0.03 0.04 0.05 

+ 

PLUNGE DISPLACEFlENT - h/b 

0 0.01 0.02 0.03 0.04 0.05 

Figure E.2: L i f t  i n  Pure Plunge, k=0.22. 

C-17 7 



0.08 

110 

90 

L I F T  PHASE 

L I F T  AND 
NORMAL FORCE 
COEFF I C 1  ENT 0.04 

5 1 

0 El0  
0 

u 

- 

0.08 

Ift ON AIRFOIL 

L I F T  AND 
NORMAL FORCE 
COEFF I C 1  ENT 0.04 

5 1 

0 
0 0.01 0.02 0.03 0.04 0.05 

0 
0 0.01 0.02 0.03 0.04 0.05 

PLUNGE DISPLACEMENT - h/b 

t 

0 0.01 0.02 0.03 0.04 0.05 

F i g u r e  E.3: L i f t  i n  P u r e  P l u n g e ,  k=0.29. 

C-178 



0.. 

PITCHING 
MOMENT 
COEFFICIENT 

‘ma 1 

ENDPLATES: 

0 ON SPAR 
ON AIRFOIL 

120 

MOblENT PHASE 
m 90 

I I I l a 

0 0.01 0.02 0.03 0.04 0.05 

B 

PLUNGE DISPLACEMENT - h/b 
+ t 

8 
60 ‘ 

Figure E.4: Pitching Moment in Pure Plunge, k=0.1€. 

ENDPLATES: 
0 ON AIRFOIL 

0.010 

PITCHING 
MONENT 0. 
COEFFICIENT 

‘ma 1 

0 0.01 0.02 0.03 0.04 0.05 
PLUNGE DISPLACEMENT - h/b 

120 r 
FlOMENT PHASE 

deg 90 
t 
B D 

t 

Figure E.5: Pitching Moment in Pure Plunge, k=0.22. 

C-179 



0.010 

D ON AIRFOIL 

MOMENT PHASE 
90 deg 

60 

PITCHING 
MOMENT 0.005 
COEFFICIENT 

‘ma 1 

t 
;cb 00 

t 
0 a 

0 
- 

El 

- 

0 

Figure E.6: Pitching Noment i n  Pure Plunge, k=0.29. 



ENDPLATES: 
0 ON AIRFOIL 
0 ON SPAR CHANGE I N  

MEAN DRAG 
0 

*‘do 
x 104 

t 
0.01 0.02 0.03 0.04 0.05 

-6 
PLUNGE DISPLACEMENT - h/b 

t 

-5 I 0 

Figure E.7: Drag i n  Pure Plunge, k=0.16. 

r ENDPLATES: 

t 
0.01 0.02 0.03 0.04 0.05 

t 0 ON AIRFOIL 
0 ON SPAR CHANGE I N  

MEAN DRAG 
0 

Acdo 
x 104 

CHANGE I N  

Acdo 

MEAN DRAG 

x 104 

Figure E.8: Drag i n  Pure Plunge, k=0.22. 

1 

0.01 0.02 t 0.03 0.04 0.0 

ENDPLATES: 
a ON AIRFOIL 
0 ON SPAR 

0 

-5 

Figure E.9: Drag i n  Pure Plunge, k=0.29. 

C-181 



c-182 



REFERENCES 

1 .  Patrick, J.L.G.F. ,  "Natural Flight and Related Aeronautics8*, 
Paper No. FF-7, Institute of Aeronautical Sciences, New York, 
1952. 

2 .  McCroskey, W.J., "Some 
ics", ASME Winter Meet 

Current Research in Unsteady Fluid Dynam- 
ng, Neu York ,  8 December 1976. 

3. Swimminq & flvinq in NatlJre, ed. by Mu, Brokaw and Brennan, 
Plenum Press, Neu York, 1975. 

4. Lighthill, M.J., Math~matical Biof lu iddvnamics,  SIAM, Philadel- 
phia ,  1975. 

5. Lilienthal, O., Birdfliaht as the Basis af A v i a t i o n ,  Longmans, 
Green C Co., Neu York, 1911. 

6. Samuelson, A . ,  Fliqht-Velocity, Boysen & Maasch, Hamburg, 1906. 

7 .  Yasil'yev, G.S. ,  "Principles o f  Flight o f  Nodels uith Flapping 
Wings", Moscow 1953, ( A D  107 1 7 3 ) .  

8. Vasil'yev, G . S . t  "Models with Flapping Wings", Izdatel'stvo 
Dosaaf, Moscow 1960, (NTIS TT 66-62401). 

9. W o l f e  J. "The Technological Prospects for Oscillating Wing Pro- 
puls ion of Ultralight Gliders'"', Proc. Second 'fnt'l. SYmp. on the 
Technology and Science of Low-speed and Motorless Flight, Cam- 
bridge, MA, 11-15 Sept. 1974, p.173.  

10. Smith, 6. ,  "Pseudo-ornithopter Propulsion", First Interational 
Symposium on the Technology and Science of Low-Speed and Motor- 
less Flight, Boston, MA, October 1972. 

1 1 .  Patrick, J.L.G.F., "Design and Construction o f  8 Full Scale Orni- 
thopter", Staten Island Community College, 1960. 

12. Patrick, J . L . G . F . ,  U.S. Patent 2 ,783 ,955 ,  March 5,1957.  

13. Weis-Fogh, T . *  "Unusual Mechanisms f o r  the Generation o f  Lift i n  
Flying Animals", Scientific Amerigan, November 1975. 

14. Theodorsen, 1.. "General Theory of Aerodynamic Instability and 
the Mechanism o f  Flutter", NACA Report 496,  1935. 

C-183 



15. 

16. 

17. 

18. 

19. 

20 * 

21. 

22 

2 3. 

24. 

25. 

26. 

27. 

28. 

Garrick, L E . ,  "Propulsion of a Flapping and Oscillating Air- 
foil'", NACA Report 557, 1936. 

Timman, R., "The Aerody 
between Two Walls", 2.  

Wu, T.Y. , "Hydrodynamic rts 1, 2 and 
3", 4. Fluid Mechanics, Vol. 46, Part 1 (19711, pp. 337-355, Part 
3 (19711, pp. 521-544, Part 3 (19711, pp. 545-568. 

Wu, T . Y . ,  "Swimming of a Ma Vot 
10, Part 3 (19611, pp. 321-344. 

McCroskey, W.J., "Inviscid Floufield of an Unsteady Airfoil", - AIAA d . ,  V O ~ .  1 1 ,  NO. 8 ,  August 1973, pp. 1130-1137. 

Fung, Y . C . ,  The Theory e f  Aeroelasticitv, Dover, New York, 1969. 

Philippe, J.J. ,  and Sagner, J. ,  "Calcul et Mesure des forces Aer- 
odynamiques sur un Profil Oscillant avec et sans Decrochage", 
AGARD'Conference Proceedings No. 1 1 1  on Aerodynamics o f  Rotary 
Wings, Paper 1 1 ,  Sept. 1972. 

Maresca, C., Favier, D . ,  and Rebont, J., "Experiments on an Aero- 
foil at high Angle of Incidence in Longitudinal Oscillations", 4. - Fluid Mechanics, Vol. 92, Part 4 (19791, pp. 671-690. 

Favier, D., Rebont, J . ,  and Maresca, C . ,  "Large Amplitude Fluctu- 
ations of Velocity and Incidence on an Oscillating Airfoil", AIAA 
d-  Val. 17, NO. 1 1 ,  NOV. 1979, pp. 1265-1266. 

Kunz, D . L . ,  "Unsteady Drag and Dynamic Stall as Simulated in a 
Varying Freestream", Georgia Institute of Technology School of 
Aerospace Engineering Ph.0. Thesis, March 1976. 

Hien, L . K . ,  "Measurements on an Oscillating Aerofoil with Appli- 
cations to Wind Energy Conversion", University o f  Auckland 
Department of Mechanical Engineering Ph. 0 .  Thesis, Private Bag, 
Auckland, New Zealand, March 1980. 

Scherer, J.O., "Ex eoretical Investigation of 
Large Amplitude Os pulsion Systems", Hydronau- 
tics, Inc., Tech. Repor 

C-184 

ississippi State Uni- 

Siekmann, J. ,  "Theoretical Studies o f  Sea Animal Locomotion, Part 
l", and *#.., Part 2", Insenieur-Archiv, V o l .  31, 1962, p. 214, 
and V o l .  32, 1963, p. 40. 



29. 

30. 

31. 

32. 

33 

34. 

35 0 

36. 

37. 

38. 

39. 

40. 

41. 

42 .  

Kelly, H.R., "Fish Propulsion Hydrodynamics", Developments &J 
Mechanics, Vol .  1, Plenum Press, New York. 1961. 

Archer, R.O., Sapuppo, J. ,  and Betteridge, D.S. ,  "Propulsion 
Characteristics of Flapping Wings", Aeronautical Journal,  V o l .  
83, No. 825, Sept. 1979. 

Fejtek, I., Nehera, J., "Experimental Study o f  Flapping Wing Lift 
and Propulsion", Aeronautical Journa l ,  Vol .  84, No. 829, Jan. 
1980, pp. 28-33. 

Halfman, R.L., "Experimental Aerodynamic Derivatives of a Sinu- 
soidally Oscillating Airfoil in Two Dimensional Flow", NACA 
Report 1108, 1952. 

Walker, C., "The Flapping Flight o f  Birds", Journal the 
Aeronautical Societv V o l .  31, 1927, pp. 337-342. 

Osborne, M.F.M., "Aerodynamics of Flapping Flight with Applica- 
tion to Insects", Journal of Experimental B i O l O o Y ,  V o l .  28, 1951, 
PP. 221-245. 

Breder, C.M., "The Locomotion of Fishes", Zoolooic~, Vol. I V ,  No. 
5 ,  Sept. 28, 1926, pp. 159-296. 

Lighthi1 1, M . J . ,  "Aquatic Animal Propulsion of High Hydromechani- 
cal Efficiency", 4. Fluid Mecti. (19701, V o l .  44, part 2 ,  pp. 
265-301. 

James, E . C . ,  '*A Note on Flapping Flight with Surging", Swimminq 
- and Flvinq NatlJtp, Vol. 2, Plenum Press, New York, 1975, pp. 
9 19-937. 

Chopra, M . G . ,  "large-Amplitude Lunate-Tail Theory o f  Fish Locomo- 
tion", J. Fluid Mechanics, Val .  74, Part 1 (19761, pp. 161-182. 

Oshima, K.# "Flow Pattern Around an Oscillating Airfoil", Compu- 
tational Fluid Dynamics Seminar, Ames Research Center, 1 Oct. 
1979. 

K ~ t 2 ,  J., and Weihs, D., "Hydrodynamic Propulsion by Large Ampli- 
tude Oscillation o f  an Airfoil with Chordwise Flexibility", J. 
Fluid Mechanics, V o l ,  88, Part 3 (19781, pp. 485-497. 

Lorell, W. and Bennett, L., "Lift in Large Order Unsteady Oscil- 
lating Two Dimensional Flow", New York University School o f  Engi- 
neering and Science, Research Division, Tech. Report 1426.02, 
March 1969. 

Betteridge, D.S., and Archer, R.D., "A study o f  the Mechanics of 
Flapping Wings", Aeronautical Quarterlv, V o l .  25, Part 2, May 
1974, pp. 129-142. 

C-185 



43. Jones, R.T., "Wing F l a p p i n g  u i t h  M i n i m u m  Energy", NASA TM 81174, 
Jan. 1980. 

44. Woods, L.C., "The L i f t  and Moment A c t i n g  on a T h i c k  A e r o f o i l  i n  
Unsteady Motion", p h i l o s o p h i c a l  T r a n s a e t i o n q  of the Royal Soci -  
&, London, A 247, 1954, p. 131. 

45. Oehme, H. and K i t z l e r ,  U., " A b t e i l u n g  fu r  a l lgemeine  z o o l o g i e  und 
p h y s i o l o g i e  der  t ie re" ,  Zoo loo ische Jahrbucher,  Vol .  79, No. 3, 
1975, pp. 402-424, (NASA T T  F-16901). 

46. Lang, T . G . ,  "Hydrodynamic A n a l y s i s  o f  D o l p h i n  F i n  P r o f i l e s " ,  
Nature,  Vol .  209, March 12, 19CG. 

47. K o t t a p a l l i ,  S.B.R.* and P ie rce ,  G.A., "Drag on an O s c i l l a t i n g  
A i r f o i l  i n  a F l u c t u a t i n g  Free Stream", j lonstpady F l u i d  Dvnamics, 
Win ter  Annual Meet ing o f  ASME, San Franc isco,  CAI 10-15 December 
1978. 

48. Beddoes, T.S., "Onset o f  Leading-Edge S e p a r a t i o n  E f f e c t s  under 
Dynamic C o n d i t i o n s  and Lou Mach Number", Proceedinss,  T h i r t y -  
F o u r t h  Annual N a t i o n a l  Meet ing o f  t h e  American H e l i c o p t e r  Soci -  
e t y ,  May 1978. 

49. Evans, W.T. ,  and Mort ,  K.W., ' 'Analysis o f  Computed Flow Parame- 
t e rs  f o r  a Set o f  Sudden S t a l l s  i n  Low Speed Two-Dimensional 
Flow", NASA TNO-85, 1959. 

50. Chopra, M.G., "Hydromechanics o f  Lunate-Ta i l  Swimming Propu l -  
sion", A. F l u i d  Mechanics, V o l .  64, P a r t  2 (19741, pp. 375-391. 

51. Rowe, W . ,  Redman, M.C., Eh le rs ,  F.E. and Sebast ian,  J.O., "Pre- 
d i c t i o n  o f  Unsteady Aerodynamic Loadings caused by Leading-Edge 
and T r a i l i n g  Edge C o n t r o l  Sur face  Mot ions  i n  Subsonic Compressi- 
b l e  Flow - A n a l y s i s  and ResultsN, NASA CR 2543, Aug. 1975. 

52. Tuck, E.O., "The E f f e c t  o f  Span-wise V a r i a t i o n s  in Ampl i tude on 
t h e  Thrust -Generat ing Performance o f  a F l a p p i n g  Thin Wing", w- 
minq and F l v i n q  in Nature,  Vol .  2 ,  Plenum Press, New York, 1975, 
pp. 953-973. 

53. Chopra, M.G., Kambe, T . ?  "Hydromechanics o f  Lunate-Ta i l  Swimming 
Propu ls ion ,  P a r t  2", 4. f l u i d  f lechanics, Vol .  79, P a r t  1 (19771, 
pp.  49-69. 

54. Bennet t ,  A.G.* "A P r e l i m i n a r y  Study o f  O r n i t h o p t e r  Aerodynamics", 
U n i v e r s i t y  o f  I l l i n o i s  Dept. o f  A e r o n a u t i c a l  and A s t r o n a u t i c a l  
Engineer ing,  Ph. D. Thesis,  Urbana, IL ,  1970. 

55. Lan, C . E . ,  "The Unsteady Q u a s i - V o r t e x - L a t t i c e  Method u i t h  A p p l i -  
c a t i o n  t o  Animal Propuls ion",  a. f l u i d  Jlechanics, Vol. 93, P a r t  4 
(19791, pp.747-763. 

C-18G 



56. 

57. 

5 8 .  

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

Rayner, J.M., '*A Vortex Theory of Animal Flight. Part 1'' and 
" ... Part 2", J. Fluid Mechanics, Vol. 91, Part 4 (19791, pp. 
697-730 and pp. 731-763. 

Weihs, D., "Semi-Infinite Vortex Trails, and Their Relation to 
Oscillating Airfoils", J. Fluid Mechanics, Vol. 54, Part 4 
(19721, pp. 679-690. 

Sparenberg, J.A., Wiersma, A.K., "On the Efficiency Increasing 
Interaction of Thrust Producing Lifting Surfaces", Swimminq and 
Flvinq in NaturP, Vol. 2, Plenum Press, New York, 1975, p. 
891-917. \ *  

Bosch, H . ,  "Interfering Airfoils in Two-Dimensional Unsteady 
Incompressible Flow", AGAR0 CP-227, Fluids Dynamics Panel Confer- 
ence, Ottawa, Canada, 26-28 Sept. 1977. 

Nu, T.Y., "Extraction o f  Flow Energy By a Wing Oscillating in 
Waves", J .  of S h i p  Research, Vol 14, No. 1 (19721, pp. 66-78. 

Rock, S.M. ,  "Transient Motion of an Airfoil: An Experimental 
Investigation in a Small Subsonic Wind Tunnel", SUDAAR 513, 
Department of Aeronautics and Astronautics, Stanford University, 
1978. 

Stoltz, P.M.,  "Unsteady Aeroelastic Modeling and Trailing-Edge 
Flap Control of an Experimental Wing in a Two-Dimensional Wind 
Tunnel", Stanford University Departinent of Aeronautics and Astro- 
nautics, SUDAAR 527, 1981. 

Von Karman, T., and Burgersp J.M., General Aerodynamic Theory - 
Perfect Fluids, (Volume I 1  of Aerodynamic Theory, Div. E, I4.F. 
Durand ed.), Julius Springer, Berlin, 1935. 

&mdbaok of Mathematical Functions, ed. by M. Abramowitz and I. 
Stegun, Dover, New York, 1970. 

Morjno, L., "Steady, Oscillatory, and Unsteady Subsonic and 
Supersonic Aerodynamics - Volume I", NASA CR 159130, January 
1980. 

Kaplan W . ,  Jcivanced Calculus, Addison-Wesley, Menlo Park, 1973. 

Standard Mathematical Tables, 22nd Edition. CRC Press, Cleveland, 
1974. 

Gradshteyn, I.S., and Ryzhik, I . M . ,  Table bf Jnteqrals, S S -  - and products, Academic Press, New York, 1965. 

Dutt, H.N., and Sreekanth, A.K., "Theoretical Method for the 
Analysis of Airfoils in Viscous flows", 4. ~ Aircraft, Vol. 17, 
Sept. 1980, pp. 700-702. 

C-187 



70. 

71. 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

80. 

81. 

82. 

McCroskey, W. J. , a n 
illating Airfoi 

Dwyer, H.A.? "Cal 
Boundary Layer Flows", AlAA d . ,  Vo.1. 1 1 ,  No. 6 ,  June 1973, pp. 
773-774. 

McNal ly, N.D. "Fortran Program for Calculating Compress 
nar and Turbulent Boundary Layers in Arbitrary Pressure 
dients", NASA TN D-5G81, Play 1970. 

Cohen, C., and Reshotko, E . ,  "The Compressible Laminar Boundary 
Layer with Heat Transfer and Arbitrary Pressure Gradient", NACA 
TR 1294, 1956. 

Sasman, P.K., and Cresci, R.J., "Compressible Turbulent Boundary 
Layers with Pressure Gradient and tieat Transfer", AIAA J., Vol. 
4, No..l ,  Jan 1966, pp. 19-25. 

"Boundary Layer Effects on Unsteady Airloads", AGARD CP-296, 
Sept. 1980. 

Triebstein, H. "Instationare Druckverteilungsmessungen an Flugel- 
Aussenlastkombinationen in inkompressibler Stromung, N, Deutsche 
Luft- und Raumfalirt Forschungsbericht', DLR-FB 77-12, 1977. 

Patel, M.H., "On Laminar Boundary Layers in Oscillating Flow", 
Proceedinos of Royal Societv of London, Series A, Vol. 347, 
No. 1645, Dec. 1975, pp. 99-123. 

Telionis, D.P., and Tsahalis, D.T., "Unsteady Turbulent Boundary 
Layers and Separation", ATAA Journal, Vol. 14, No. 4, April 1976, 
pp. 468-474. 

Landahl, M.T., and Ashley, H., "Thickness and Boundary Layer 
Effects", Part I, Chapter 9, AGARD Manual on Aeroelasticity, 
March 1969. 

Boyd, W.N., "Effect o f  Chordwise Forces and Deformations and 
Steady Lift on Wing Flutter", Ph.D. Disserta- 
rsity Dept. o f  Aeronautics and Astrona 

November 1977. 

termination 
s for Bounda- 

0 ", NACA TN 43 

c-188 



83. R i l e y ,  D.R.# r'Wind-Tunnel I n v e s t i g a t i o n  and A n a l y s i s  o f  t h e  
E f f e c t s  o f  End P l a t e s  on t h e  Aerodynamic C h a r a c t e r i s t i c s  o f  an 
Unswept WingN, NACA TN 2440, Aug. 1951. 

84. Gibbs, J.W.,  Vector  A n a l v s i s ,  C. Scr ibner 's  Sons, Neu York, 1902. 

85. "Load C e l l  Terminology and Tes t  Procedure Redommendation", Sca le  
Manufacturer 's  A s s o c i a t i o n ,  Washington, D.C., 1977. 

86. Pope, A., Wind-Tunnel Test inq ,  Second E d i t i o n ,  John Wi ley  & Sons, 
' New York, 19CO.  

1 .. 
87. Abbot t ,  I . H . ,  and Von Doenhoff,  A . E . @  Theory o f  Winq Sect ionq,  

Dover, New York, 1959. 

C-18 9 


